

Applied hydro-biogeochemistry

4.00 credits

30.0 h + 15.0 h

Q1

Teacher(s)	Delmelle Pierre ;Gerin Patrick (coordinator) ;					
Language :	English > French-friendly					
Place of the course	Louvain-la-Neuve					
Prerequisites	Inorganic and analytical chemistry; transfer phenomena; soil science, chemical thermodynamics and kinetics; bases in biology, biochemistry, microbiology.					
Main themes	The course explores the physico-chemical and (micro) biological processes that govern the functioning of aquatic and soil, natural or anthropised, (eco-)systems. It describes how the principles of thermodynamics and kinetics are applied to these systems to understand their state and their evolution, in particular taking account of biological catalysis. The course focuses on the contextualisation of theoretical knowledge by analyzing specific/ real environmental issues (eutrophic waters, wastewater treatment, soil pollutants,). The various factors and physico-chemical and (micro) biological processes involved in these systems are presented and analyzed, with investigation of the complexity of their interactions. The course aims to highlight the scientific background neede to develop strategies for environmental management.					
Learning outcomes	At the end of this learning unit, the student is able to : a. Contribution de l'activité au référentiel AA (AA du programme) 1.1, 1.2, 1.4 2.1, 2.2, 2.3, 2.4 3.1, 3.7 4.1, 4.2, 4.3, 4.4 6.1, 6.2, 6.4, 6.5 8.5 b. Formulation spécifique pour cette activité des AA du programme (maximum 10) At the end of this activity, the student is able to quantitatively solve a complex problem concerning the functioning or evolution of aquatic or soll ecosystems , natural or affected by man, that is conditioned by interactions between physical, chemical and biological processes. More specifically, the student is able to : 1 - Interpret data on the characteristics of a soil or water, natural, polluted or industrial (eco)system; - Identify and explain the basic phenomena (physical, chemical, biological , transfers, thermodynamics) involved in the functioning of this system; - Propose strategies to control these phenomena with the perspective of environmental protection , pollution control or industrial production; - Choose the stoichiometric , thermodynamic and kinetic models appropriate to formalize the key processes of the problem in the adequate system of equations; - Use these models and corresponding simulation tools to calculate the evolution of state variables (eg concentrations, flux .) that characterize the system; - Based on the data and results, take a position with respect to the adequacy of the proposed solution ;					

Evaluation methods	The assessment will be based on: - A few assignments to be completed during the course weeks individually/by team (continuous assessment). Feedback will be provided on each assignments. They are an integral part of the learning support; - An individual written (open documents) exam asking each student (i) to solve problems through the use of the tools practiced during the course, and (ii) to interpret his/her results by mobilizing the concepts discussed in class. To ensure a sufficient balance in the control by the student of the different approaches covered by the course, the examination mark will be the <u>geometric mean</u> of the marks obtained for the assessment of each main parts of the course: Mark= [assignments_PHREEQC* a + exam_PHREEQC *b]^0.5 * [assignments_manual * c + exam_manual *d]^0.5 with a,b,c,d weighing factors (>=0, a+b= c+d =1) corresponding to the work load of each part The assignments can only be submitted following the calendar defined on Moodle (not submitted =0; late submission = penalty). In case of second exam session, the marks of the continuous assessment will be kept; the assignments cannot be resubmitted.			
Teaching methods	The course is divided in 2 main parts, corresponding to complementary approaches - manual calculation approaches of "simple" equilibria - PHREEQC-assisted calculation approaches of "complex" equilibria Learning activities will be based on - Lectures - Exercises: Supervised resolution of exercises, tutoring and access to exercices solutions - Assignments (individual or in team; distributed during the semester) using the concepts and tools developed during the course, with feedback.			
Content	Lectures and exercises:- Reminding of basic concepts and contextualized deeper investigation of equilibria: atmospheric gas - water, acid-base, complexation - dissolution, oxidation-reduction (electron cycles in the biosphere, redox potential of natural waters and soil) - Characterization of soil and water: biotic and physico -chemical parameters - Analysis of the functioning of environmental systems : pollution of aquatic ecosystems (pollution profile, eutrophication), background of waste water purification processes (primary, secondary, tertiary), substances dynamics in the soil profile (not reactive and reactive solutes, complexes), chemistry and biochemistry of the rhizosphere and root. - Practical use of the PHREEQC software. - Simulation of complex physico-chemical equilibria with PHEEQC and interpretation of the results. <u>Personal work (tutoring by the supervisors)</u> . Analysis of practical situation relevant to the functioning of aquatic or soil systems: development of the relevant PHEEQC scripts and simulation of equilibria, interpretation of the results, translation of the interpretations to practical recommendations. This course aims to prepare students to professional activities that involve analysis or management of aquatic and soil environments. It is based primarily on the structuring and integration of knowledge of basic chemistry, (micro) biology and engineering in the previous academic years, and their implementation to understand the functioning of the natural environment or designing technologies for soil remediation or water treatment .			
Inline resources	Moodle PHREEQC (information on Moodle) Autre: Scientific journals in the field of soil and water, available though UCL libraries subscriptions			
Bibliography	Ouvrages de référence (facultatifs): Werner Stumm, James J. Morgan. 1996. Aquatic Chemistry: chemical equilibria and rates in natural waters. 3rd Edition. Wiley-Interscience Publication, John Wiley and Son Inc. ISBN 0-471-51184-6, ISBN 0-471 ou Laura Sigg, Werner Stumm, Philippe Behra. 1994. Chimie des milieux aquatiques: chimie des eaux naturelles et des interfaces dans l'environnement. 2d edition. Masson. ISBN 2-225-84498-4.			
Other infos	Activities following the proposed activity: Courses of effluent and soil treatments, Project in Environmental Science and Technology, master thesis. This course can be given in English.			
Faculty or entity in charge	AGRO			

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Learning outcomes		
Master [120] in Forests and Natural Areas Engineering	BIRF2M	4		٩		
Master [120] in Environmental Bioengineering	BIRE2M	4		٩		
Master [120] in Chemistry and Bioindustries	BIRC2M	4		٩		
Master [120] in Agriculture and Bio-industries	SAIV2M	4		٩		