Inférence statistique et vraisemblance

lstat2040  2022-2023  Louvain-la-Neuve

Inférence statistique et vraisemblance
5.00 crédits
30.0 h + 15.0 h
Q2
Enseignants
Colling Benjamin (supplée El Ghouch Anouar); El Ghouch Anouar;
Langue
d'enseignement
Français
Préalables
Concepts et outils équivalents à ceux enseignés dans l'UE
LSTAT2190Concepts et traitement de vecteurs aléatoires
L'étudiant devrait avoir suivi un cours d'analyse mathématique de niveau universitaire ainsi qu'une formation de base en statistique méthodologique, comprenant un cours d'introduction en probabilité et statistique.
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1 A. Eu égard au référentiel AA du programme de master en statistique, orienation générale, cette activité permet aux étudiants de maîtriser de manière prioritaire les AA 1.1, 1.4, 1.5, 4.3 et 4.4.
Eu égard au référentiel AA du programme de master en statistique, orienation biostatistique, cette activité permet aux étudiants de maîtriser de manière prioritaire les AA 1.1, 1.4, 1.5 et 4.3.
B. À l'issue de cet enseignement, l'étudiant devrait avoir acquis les outils nécessaires à une étude statistique plus approfondie du point de vue mathématique. Il comprendra les bases de la statistique multivariée et les concepts fondamentaux de l'inférence statistique. L'étudiant sera amené à quantifier l'information contenue dans un ensemble de données, à estimer des paramètres inconnus, à étudier les propriétés de ces estimateurs et à les comparer. Il sera en mesure d'associer à ces estimateurs un certain degré de confiance basé sur des outils probabilistes. L'étudiant comprendra aussi quelques points importants de la théorie asymptotique. Il devrait être capable de reproduire et transférer les arguments de dérivation des résultats techniques et mathématiques développés au cours et pendant les séances de TP.
 
Contenu
Il s'agit d'un cours méthodologique qui traite quelques aspects fondamentaux d'analyse statistique fréquentiste:
  • Méthodes d'estimations les plus fréquentes.  
  • Comparaison d'estimateurs. 
  • Information de Fisher. Borne de Cramer-Rao.
  • Famille exponentielle.
  • Méthode du Maximum de Vraisemblance.
  • Théorie des tests et région de confiance.
  • Inférence basée sur la vraisemblance
Méthodes d'enseignement
Le cours comprend des exposés magistraux et des séances d'exercices.
Modes d'évaluation
des acquis des étudiants
L'évaluation consiste à un examen écrit de +/- 3h.
Bibliographie
  • Syllabus sous format d'un recueil de transparents vus au cours.
  • Casella, G. et Berger, R.L.. (2012). Statistical Inference. ISBN-13: 9780534243128.
Support de cours
  • transparents sur moodle
Faculté ou entité
en charge
LSBA


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] : ingénieur civil biomédical

Master [120] en statistique, orientation biostatistiques

Master [120] en sciences mathématiques

Master [120] en statistique, orientation générale

Master [120] : ingénieur civil en mathématiques appliquées

Certificat d'université : Statistique et science des données (15/30 crédits)