

CLouvain lphys2234						Advanced quantum field the
5.00 crédits			30.0 h	Q2		

Cette unité d'enseignement bisannuelle n'est pas dispensée en 2022-2023 !

Langue d'enseignement	Anglais > Facilités pour suivre le cours en français					
Lieu du cours	Louvain-la-Neuve					
Préalables	Ce cours suppose acquises les compétences de base en théorie quantique des champs telles que visées par le cours LPHYS2132					
Thèmes abordés	 Matrice S et fonctions de corrélation: théorie asymptotique, représentation de Källen-Lehmann, réduction LSZ, fonctions chronologiques à n points et théorie de perturbation. Théorie de perturbation renormalisée à tous les ordres, et schémas de renormalisation; i) approche par diagrammes de Feynman; ii) approche par intégrales et méthodes fonctionnelles. Méthodes fonctionnelles perturbatives et non perturbatives en théorie quantique des champs; action et potentiel quantiques effectifs. Thèmes choisis de théorie quantique des champs avancée, en fonction des années et des intérêts du public, et dont l'un fait l'objet d'un travail personnel. 					
Acquis d'apprentissage	A la fin de cette unité d'enseignement, l'étudiant est capable de : a. Contribution de l'unité d'enseignement aux acquis d'apprentissage du programme (PHYS2M et PHYS2M1) AA1 : A1.1, A1.2, A1.6 AA2 : A2.1, A2.5 AA3 : A3.1, A3.2, A3.3, A3.4 AA4 : A4.1, A4.2 AA5 : A5.1, A5.2, A5.3, A5.4 AA6 : A6.1, A6.2 AA7 : A7.1, A7.3, A7.4 AA8 : A8.1 b. Acquis d'apprentissage spécifiques à l'unité d'enseignement Au terme de cette unité d'enseignement, l'étudiant.e sera capable de : 1. mettre en oeuvre la théorie de perturbation renormalisée de théories quantiques de champs scalaires et spinoriels, voire vectoriels et de jauge ; 2. comprendre les rôles de la régularisation et du point de renormalisation dans un schéma de renormalisation perturbative ; 3. expliquer l'apparition de masses et couplages d'interaction fonctions d'échelles de renormalisation ; 4. approfondir l'étude d'un sujet spécifique de théorie quantique des champs ; 5. mettre les contenus du cours en lien avec les développements actuels en théorie quantique des champs à l'interface des interactions quantiques fondamentales et de l'interaction gravitationnelle.					
Modes d'évaluation des acquis des étudiants	Examen écrit d'exercices combiné avec un examen oral individuel sur base d'un rapport de projet personnel.					
Méthodes d'enseignement	Exposés magistraux. Projet personnel intégrateur – sujet au choix. Programme de lectures pour étude personnelle.					
Contenu	 Matrice S et fonctions de corrélation : théorie asymptotique, représentation de Källen-Lehmann, réduction LSZ, fonctions chronologiques à n points et théorie de perturbation. Théorie de perturbation renormalisée à tous les ordres, et schémas de renormalisation ; i) approche par diagrammes de Feynman ; ii) approche par intégrales et méthodes fonctionnelles. Méthodes fonctionnelles perturbatives et non perturbatives en théorie quantique des champs ; action et potentiel quantiques effectifs. Thèmes choisis de théorie quantique des champs avancée, en fonction des années et des intérêts du public, et dont l'un fait l'objet d'un travail personnel, comme par exemple : 					

Université catholique de Louvain - Advanced quantum field theory - cours-2022-lphys2234

	1. méthodes et contributions non perturbatives et topologiques (anomalies, instantons, monopoles,); 2. quantification des théories de jauge et symétrie BRST; 3. équations du groupe de renormalisation; 4. supersymétrie et supergravité; 5. théorie quantique des champs sur espace-temps courbe; 6. intrication quantique; 7. etc.
Bibliographie	 - M. E. Peskin and Daniel S. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Perseus Books, 1995). - Cl. Itzykson and JB. Zuber, Quantum Field Theory (MacGraw-Hill, New York, 1980). - P. Ramond, Field Theory: A Modern Primer (Benjamin Cummings, Reading, 1981). Ainsi que d'autres ouvrages et documents de référence en fonction des sujets choisis d'année en année. As well as other reference books and documents depending on the chosen topics from one year to the next.
Faculté ou entité en charge:	PHYS

Programmes / formations proposant cette unité d'enseignement (UE)									
Intitulé du programme	Sigle	Crédits	Prérequis	Acquis d'apprentissage					
Master [60] en sciences physiques	PHYS2M1	5		0					
Master [120] en sciences physiques	PHYS2M	5		0					