

linma2491 2022

Operational Research

5.00 crédits 30.0 h + 22.5 h Q2	5.00 crédits	30.0 h + 22.5 h	Q2
-------------------------------------	--------------	-----------------	----

Enseignants	Madani Mehdi (supplée Papavasiliou Anthony) ;Papavasiliou Anthony ;
Langue d'enseignement	Anglais > Facilités pour suivre le cours en français
Lieu du cours	Louvain-la-Neuve
Préalables	 Un cours de programmation linéaire, non-linéaire, et de programmation en nombres entiers. Calcul des probabilités: espace de probabilité, probabilité, variable aléatoire, espérance mathématique, indépendance, loi forte des grands nombres, théorème central limite. Connaissance d'un langage de programmation mathématique (AMPL, Matlab, OPL-Studio,')
Thèmes abordés	Comment formuler un problème d'optimisation dans lequel les données sont sujettes à l'incertitude? Comment prendre en compte les informations et les valeurs révélées des données au cours des étapes du processus d'optimisation? Comment résoudre les modèles d'optimisation ainsi obtenues? L'optimisation stochastique est le cadre idéal pour traiter de telles questions. Un ensemble de méthodes de résolution pour les problèmes de grandes tailles seront aussi abordées: Décomposition de Benders, décomposition de Benders imbriquée, méthodes Lagrangiennes,' Applications: Production, logistique, finance, '
Acquis	A la fin de cette unité d'enseignement, l'étudiant est capable de :
d'apprentissage	Au terme du cours, l'étudiant sera en mesure de:
	• formuler des problèmes de prise de décision dans un contexte d'incertitude sous forme de programmes mathématiques. • identifier les structures mathématiques dans les programmes mathématiques de grande taille qui permettent leur décomposition, • concevoir des algorithmes pour résoudre des problèmes d'optimisation de grande tailleen situation d'incertitude, • mettre en 'uvre des algorithmes pour résoudre les problèmes d'optimisation stochastique de grande taille, • évaluer la qualité des politiques alternatives pour résoudre les problèmes de prise de décision dans l'incertitude
Modes d'évaluation des acquis des étudiants	Examen écrit et/ou oral Des devoirs réguliers
Méthodes d'enseignement	2 heures de cours magistraux par semaine, et 2 heures de TP par semaine. Les devoirs seront évalués par l'enseignant et / ou l'assistant.
Contenu	Fondements mathématiques (dualité, théorie des probabilités) Modèles de programmation stochastique Valeur d'information parfaite et valeur de solution stochastique Algorithmes cutting plane Programmation dynamique Programmation dynamique Relaxation lagrangienne
Ressources en ligne	https://moodleucl.uclouvain.be/course/view.php?id=4983
Bibliographie	 Notes de cours Impressions de manuels ou articles fournies au cours. Le livre suivant servira de support pour la plupart du cours : John Birge, Francois Louveaux, "Introduction to Stochastic Programming"
Faculté ou entité en charge:	MAP

Programmes / formations proposant cette unité d'enseignement (UE)						
Intitulé du programme	Sigle	Crédits	Prérequis	Acquis d'apprentissage		
Master [120] : ingénieur civil en mathématiques appliquées	MAP2M	5		٩		
Master [120] : ingénieur civil en science des données	DATE2M	5		٩		
Master [120] en science des données, orientation technologies de l'information	DATI2M	5		٩		