	/ain Iphys2269		Remote sensing of climate change		
[5.00 credits	3	0.0 h	Q2	

() This biannual learning unit is not being organized in 2021-2022 !

Teacher(s)	Dekemper Emmanuel ;					
Language :	English					
Place of the course	Louvain-la-Neuve					
Prerequisites	Basic training in physics and mathematics (level of bachelor in sciences or applied sciences).					
Main themes	Physico-chemical characteristics of the upper atmosphere and of radiative transfer of solar radiation ; gr based and space-borne spectroscopic methods ; data processing algorithm and inverse methods.					
Learning outcomes	At the end of this learning unit, the student is able to : a. Contribution of the teaching unit to the learning outcomes of the programme (PHYS2M and PHYS2M1) AA1: A1.1, A1.5 AA2: A2.5 b. Expected learning outcomes At the end of this teaching unit, the student will be able to : 1. describe the main processes defining the trace gas composition of the upper atmosphere ; 2. understand the basic principles of atmospheric remote sensing: geometry, spectral domains and observation methods ; 3. understand the inverse problems related to ground-based and space-borne observations ; 4. assess the error budgets for several remote sensing modes and identify their intrinsic limitations ; 5. understand the design principles of a space remote sensor and its operational use.					
Evaluation methods	Oral examination based on a global analysis of a scientific paper describing a remote sensing space mission.					
Teaching methods	Lectures. Integrative project. Tutorial of MODTRAN 6.					
Content	1. Basic concepts about the atmospheric system and radiative transfer a. atmospheric vertical structure b. global dynamics and chemical composition c. solar irradiance and Earth's radiative balance d. light-particle interaction and multiple scattering : albedo, aerosols and clouds 2.Observation methods a. observation geometries from space : emission and absorption, nadir and limb views b. spectrometers and imagers from UV to mm waves c. 40 years of space remote sensing : achievements and perspectives d. ground-based networks and validation of space observations 3. Data processing in space remote sounding a. scope : orders of magnitude and spatio-temporal resolutions b. atmospheric corrections c. specific inverse methods for atmospheric remote sensing 4. Climate variables : measurements and climatologies a. review of the main climate variables b related open questions for atmospheric remote sensing					
Bibliography	« Inverse Methods for Atmospheric Sounding : Theory and Practice », Clive Rodgers, World Scientific, https:// doi.org/10.1142/3171.					

Faculty or entity in	PHYS
charge	

Programmes containing this learning unit (UE)								
Program title	Acronym	Credits	Prerequisite	Learning outcomes				
Master [120] in Geography : Climatology	CLIM2M	5		۹				
Master [120] in Physics	PHYS2M	5		۹				
Master [60] in Physics	PHYS2M1	5		٩				