

Teacher(s)	Candelon Bertrand ;					
Language :	English					
Place of the course	Louvain-la-Neuve					
Prerequisites	You should have a knowledge of basic topics in statistics, econometrics and finance such as those covered in the following courses:					
	Fundamental mathematical and statistical concepts (such as those covered in Mathématiques avancées e fondements d'économétrie [LECGE1337])					
	Advanced Finance [LLSMS2100A or LLSMS2100B]					
	In addition, this course is reserved for students with a bachelor's degree in business engineering or students wit equivalent quantitative method skills					
Main themes	This course overviews topics in computational finance and financial econometrics (data sciences applied t finance).					
	The emphasis of the course will be on making the transition from an economic model of asset return behavior t an econometric model using real data.					
	This involves:					
	1. exploratory data analysis;					
	2. specification of models to explain the data;					
	3. estimation and evaluation of models;					
	4. testing the economic implications of the model;5. forecasting from the model.					
	The modeling process requires the use of economic theory, matrix algebra, optimization techniques, probabili models, statistical analysis/econometrics, and statistical software (R).					
	Both edX and DataCamp plateforms will be used to allow practical training and continuous learning on R.					
Learning outcomes	At the end of this learning unit, the student is able to :					
	Upon completion of this course, students are expected to complete the following key tasks:					
	 Have a good understanding of important issues in financial econometrics and computational finance; Be able to apply concepts and tools learned in class. 					
	Upon completion of this course, students are expected to develop the following capabilities :					
	3. Knowledge and reasoning;					
	4. Critical thinking skills.					
Evaluation methods	Weekly assigments, final project and oral defence.					
Teaching methods	Lectures, inverted classrooms, workshops, interventions by experts, assigments, final projects					
Content	The course covers the theoretical and practical aspects of time series forecast. The topics covered are:					
	. Refreshing in time series conometrics.					
	. AR, MA, ARMA processes.					
	. Unit root and non stationarity.					
	. VAR and VECM models.					
	. New forecasting models					
	All empirical exercices and projects will be done with R.					
Inline resources	Moodle et teams					
D	Forecasting: Principles and Practice (FPP): Rob J Hyndman and George Athanasopoulos, https://otexts.com/fp					
Bibliography	Introduction to Econometrics with R (IER): Christoph Hanck, Martin Arnold, Alexander Gerber, and Ma					

Faculty or entity in	CLSM
charge	

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Learning outcomes		
Master [120] : Business Engineering	INGM2M	5		٩		
Master [120] : Business Engineering	INGE2M	5		٩		