UCLouvain

linma2875

2021

System Identification

5.00 credits	30.0 h + 30.0 h	Q2
--------------	-----------------	----

Teacher(s)	Lataire John ;
Language :	English
Place of the course	Louvain-la-Neuve
Prerequisites	This courses assumes familiarity with transfer functions, as taught in LINMA1510 (Linear Control) or LFSAB1106 (Applied mathematics : Signals and systems)
Main themes	This class is an introduction to system identification, which consists in finding an appropriate representation of a dynamical system using appropriate measurements. It will cover some of the main parametric and nonparametric methods for identifying dynamical systems, including in closed loop. It will also cover the properties of signals and model classes that are relevant for system identification. A realistic identification project will give students the opportunity to apply and implement the techniques that they will have learned.
Learning outcomes	At the end of this learning unit, the student is able to :
	With respect to the L.O. framework, this class contributes to the developpement of the following learning outcomes
	• AA1.1, AA1.2, AA1.3 • AA2.1, AA2.4 • AA3.2 • AA5.3, AA5.5
	More precisely, by the end of the class, the student will be able to :
	recognize a problem of system identification propose and implement solutions to simple identification problems identify a dynamical systems using input-output data validate a model of system that has been identified, and compare different simple models design an experiment to identify a simple system develop a deeper understanding of system identification by him/herself if necessary in order to solve more complex problems
	Transversal learning outcomes :
	 Handling unforeseen technical issues that appear when treating a real-world problem Making reasonable hypothesis for a given problem, and evaluating them a posteriori Taking part to a technical class in English
Evaluation methods	The grade will be based on
	 An exam at the end of the year. The exam is normally a written exam, but may be replaced by a remote oral exam in case required by sanitary situation or by practical constraints. A project on the identification of a system on the basis of real input/output data. The grade of the project is determined by the report prepared by the students, and on an individual oral interview. Problem sets during the year. The problems are graded based on the student's demonstration of his/her understanding of the problem and its solution. This may involve individual oral interviews.
	More precise information will be made available on Moodle.
Teaching methods	Regular lectures. Resolutions of simple problems under the supervison of teaching assistant in order to get familiar with new concepts.
	The activities above take place in a classroom, but may be organized partly or entirely remotely if required by the sanitary situation or by practical constraints.
	 Problem sets to be solved in small group in order to develop a deeper understanding of the concepts. A complete project of system identification in realistic conditions.
Content	The following topics will be covered

Université catholique de Louvain - System Identification - en-cours-2021-linma2875

	 Nonparametric methods: temporal analysis, frequential analysis, including Fourier and spectral analysis Main classes of LTI systems and their properties, including the notions of identifiability and predictors Certain parametric methods: linear regression, instrumental variables, prediction errors, and some statistical methods including the maximum likelihood method The properties of (input) signal, including the notion of information content of the signals and the level of persistence of excitation. The convergence of the method seen Identification techniques for systems controlled in closed loop
Inline resources	https://moodleucl.uclouvain.be/course/view.php?id=9007
Bibliography	Le cours s'appuie sur un syllabus disponible sur Moodle Des livres de références sont également proposés : 1. L. Ljung System Identification - Theory for the user Prentice Hall, 1999. (disponible en bibliothèque) 2. T. Soderstorm and P Stoica, System Identification (http://user.it.uu.se/~ts/sysidbook.pdf)
Other infos	The lectures and problem sessions are in English, and all documents are in English. Homework, exams, and project reports can be written in English or French. Students are expected to be familiar with dynamical systems and transfer functions.
Faculty or entity in charge	MAP

Programmes containing this learning unit (UE)							
Master [120] in Mechanical Engineering	MECA2M	5		٩			
Master [120] in Data Science Engineering	DATE2M	5		٩			
Master [120] in Electrical Engineering	ELEC2M	5		٩			
Master [120] in Electro- mechanical Engineering	ELME2M	5		٩			
Master [120] in Data Science: Information Technology	DATI2M	5		٩			
Master [120] in Biomedical Engineering	GBIO2M	5		٩			
Master [120] in Mathematical Engineering	MAP2M	5		٩			