

Teacher(s)	Schaus Pierre ;					
Language :	English					
Place of the course	Louvain-la-Neuve					
Main themes	 Constraints and domains Practical aspects of c onstraint solvers Constraint Satisfaction Problems (CSP) Models and languages for constraint programming Methods and techniques for constraint solving (consistency, relaxation, optimization, search, linear programming, global constraints,) Search techniques and strategies Problem modelling and resolution Applications to differents problem classes (e.g. planification, scheduling, ressource allocation, economics, robotics) 					
Learning outcomes	At the end of this learning unit, the student is able to : Given the learning outcomes of the "Master in Computer Science and Engineering" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes: • INFO1.1-3 • INFO2.2-4 • INFO5.4-5					

• INFO6.1, INFO6.4

Given the learning outcomes of the "Master [120] in Computer Science" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:

• SINF1.M4 • SINF2.2-4

1

- SINF5.4-5
- SINF6.1, SINF6.4

Students completing successfully this course will be able to

- explain and apply techniques for solving Constraint Satisfaction Problems
- solve simple problems involving CSP
- explain foundations of models and languages for constraint solving
- · identify problem classes where constraint programming can be apply successfully
- model simple problems in the form of constraints, and express these models in a constraint programming language, including search strategies.

Students will have developed skills and operational methodology. In particular, they have developed their ability to:

- master rapidly a new programming language;
- use technical documents to deepen their knowledge of a topic.

Evaluation methods	 Projects (50% of final grade) Written exam (50% of final grade) Project and problem sets are mandatory during the semester of the course and cannot be repeated for the second examination session.
Teaching methods	Lectures and practice sessions
Content	 Constraint Programming : a Declarative Programming paradigm Architecture of a constraint programming solver Global contraints and implementation techniques (incrementality, etc) Search techniques and strategies Combinatorial optimization problem modeling and solving

Université catholique de Louvain - Constraint programming - en-cours-2021-linfo2365

	Applications to different problem classes (e.g. planification, scheduling, resource allocation, economics, robotics)
Inline resources	https://moodleucl.uclouvain.be/course/view.php?id=9158 www.minicp.org
Bibliography	Le site www.minicp.org + lectures suggérées pendant le semestre
Other infos	A good background in data-structure and algorithms is required to follow this course and a good knowledge of Java language
Faculty or entity in charge	INFO

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Learning outcomes			
Master [120] in Data Science Engineering	DATE2M	5		٩			
Master [120] in Computer Science and Engineering	INFO2M	5		ø			
Master [120] in Data Science: Information Technology	DATI2M	5		ø			
Master [120] in Computer Science	SINF2M	5		٩			