UCLouvain

linfo2262

Machine Learning :classification and evaluation

2021

6.00 credits	30.0 h + 30.0 h	Q2

Teacher(s)	Dupont Pierre ;				
Language :	English				
Place of the course	Louvain-la-Neuve				
Main themes	Learning as search, inductive bias Combinations of decisions Loss function minimization, gradient descent Performance assessment Instance-based learning Probabilistic learning Unsupervised classification				
Learning outcomes	At the end of this learning unit, the student is able to :				
Ç .	Given the learning outcomes of the "Master in Computer Science and Engineering" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:				
	• INFO1.1-3 • INFO2.3-4 • INFO5.3-5 • INFO6.1, INFO6.4				
	Given the learning outcomes of the "Master [120] in Computer Science" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:				
	• SINF1.M4 • SINF2.3-4 • SINF5.3-5 • SINF6.1, SINF6.4				
	Students completing successfully this course will be able to:				
	 understand and apply standard techniques to build computer programs that automatically improve with experience, especially for classification problems assess the quality of a learned model for a given task assess the relative performance of several learning algorithms justify the use of a particular learning algorithm given the nature of the data, the learning problem and a relevant performance measure use, adapt and extend learning software 				
	Students will have developed skills and operational methodology. In particular, they have developed their ability to:				
	 use the technical documentation to make efficient use of existing packages, communicate test results in a short report using graphics. 				
Evaluation methods	For the first session , the global grade for the course is solely based on the grades of the computing projects, submitted and evaluated during the semester. This global grade is computed as a weighted average of the project grades according to the following weighting scheme: • project 1 = 10% • project 2 = 15% • project 3 = 10% • project 4 = 15% • project 5 = 50%				
	The projects are not evaluated again for the second session and may not be resubmitted. The grades for projects 1 to 4 are kept as such, while project 5 is replaced by a closed book written exam. This written exam is by default on paper or, when appropriate, on a computer. The global grade is computed according to the same weighting scheme used for the first session, with the written exam representing 50% of this global grade (and replacing the project 5 grade).				

Université catholique de Louvain - Machine Learning :classification and evaluation - en-cours-2021-linfo2262

Teaching methods	 Lectures Computing projects including theoretical questions and practical applications. These projects are implemented in python. They are submitted and evaluated on the <i>Inginious</i> platform. 	
Content	 Decision Tree Learning: ID3, C4.5, CART, Random Forests Linear Discriminants: Perceptrons, Gradient-Descent and Least-Square Procedures Maximal Margin Hyperplanes and Support Vector Machines Deep Learning Probability and Statistics in Machine Learning Performance Assessment: Hypothesis testing, Comparing Learning Algorithms, ROC analysis Gaussian Classifiers, Fisher Linear Discriminants Bayesian Learning: ML, MAP, Optimal Classifier, Naive Bayes Instance-based learning: k-NN, LVQ 	
Inline resources	moodle.uclouvain.be/course/view.php?id=1836	
Bibliography	Des ouvrages complémentaires sont recommandés sur le site Moodle du cours. Additional textbooks are recommended on the Moodle site for this course.	
Faculty or entity in charge	INFO	

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Learning outcomes			
Master [120] in Statistics: General	STAT2M	5		٩			
Master [120] in Data Science Engineering	DATE2M	5		٩			
Master [120] in Electrical Engineering	ELEC2M	5		٩			
Master [120] in Computer Science and Engineering	INFO2M	6		٩			
Master [120] in Data Science: Information Technology	DATI2M	5		٩			
Master [120] in Statistics: Biostatistics	BSTA2M	5		٩			
Master [120] in Biomedical Engineering	GBIO2M	5		٩			
Master [60] in Computer Science	SINF2M1	6		٩			
Certificat d'université : Statistique et sciences des données (15/30 crédits)	STAT2FC	6		٩			
Master [120] in Computer Science	SINF2M	6		٩			
Master [120] in Mathematical Engineering	MAP2M	5		٩			
Master [120] in Data Science : Statistic	DATS2M	6		٩			