UCLouvain

ELECTROMECHANICAL CONVERTERS

5.00 credits

2021

30.0 h + 30.0 h

Q2

Teacher(s)	Dehez Bruno ;				
Language :	French				
Place of the course	Louvain-la-Neuve				
Prerequisites	 LEPL 1202 (Physics) LELEC 1370 (Measurements and electrical circuits) The prerequisite(s) for this Teaching Unit (Unité d'enseignement – UE) for the programmes/courses that offer this Teaching Unit are specified at the end of this sheet. 				
Main themes	 Single-phase and three-phase transformers General Theory of electromechanical converters Rotating field machines Asynchronous machines Synchronous machines DC Machines 				
Learning outcomes	 At the end of this learning unit, the student is able to : In consideration of the reference table AA of the program " Master's degree civil engineer mechanics ", this course contributes to the development, to the acquisition and to the evaluation of the following experiences of learning: Contribution of the course to the program objectives Axis 1 (1.1, 1.2, 1.3), Axis 3 (3.3), Axis 5 (5.4) Specific learning outcomes of the course At the end of the course, students will be able to: Link the fundamental concepts (Faraday's law, energy and magnetic co-energy,) to the general equations of an electromechanical converter; Build the steady state model (equations and equivalent circuit) of a rotating field machine, an asynchronous machine (three or single-phase), a synchronous machine and a DC machine; Build the steady state model (equations and equivalent circuit) of the transformer (single or three phase); Experimentally determine the parameters of these models Use these models to predict operating conditions of these devices depending on the supply and the load. In addition, the student will be able to: Determine and interpret the characteristic quantities of an electromechanical converter; Explain the principle of the universal motor; Explain the principle of the universal motor; Explain how to connect and control an alternator on the grid. 				
Evaluation methods	 Students will be evaluated: Collectively based on the reports of the 2 practical labs performed in groups of 4 to 5 students during the semester; Individually based on a written exam for the exercise part of the course and an oral exam for the theoretical part. For the written exam, no documents are allowed except a form of two A4 pages written by the student and containing only formulas, diagrams or graphs. The final mark is the weighted average of the marks obtained for : The reports from the two laboratories, 20%; The written examination on the exercises, 40%; The oral examination on the theory, 40%. 				

Teaching methods	Teaching is organized in:				
	 13 lectures; 7 supervised exercise sessions; 2 practical lab sessions; 				
	• 3 virtual lab sessions.				
	The practical lab sessions are carried out in groups of 4 or 5 students and lead to the writing of a synthesis report. Virtual lab sessions are carried out autonomously online (via iCampus), but consultancy session are nevertheless organized.				
	The Moodle platform also includes a series of multiple-choice questions allowing the students to evaluate and deepen their understanding of key concepts for the course. It also includes a series of illustrations for bette appropriating these concepts.				
	Depending on the health situation, the teaching activities can be organized in face-to-face, remotly, using videoconference, or a mix of both.				
Content	- Introduction, reminder of the basics of electrical circuits (1h)				
	 The single-phase transformers (4h): structure, fundamental laws, models of the ideal transformer, of the perfect transformer and of the real transformer, on load operation, experimental parameter identification Three-phase transformers (1 hour): structure, connection modes, single-phase equivalent circuit 				
	- The general theory of electromechanical converters (2 hours): classification, structure, basic assumptions electrical and mechanical equations, magnetic energy and co-energy, electromagnetic torque				
	- Rotating field machines (4h): general design features, equations, supply, equivalent circuit, saturation synchronous and asynchronous operating modes, main structures of rotating field machines				
	- The three-phase asynchronous machine (5h): specific design features, equations, equivalent circuit, phaso diagram (the circle diagram), torque-speed characteristic, operating point, saturation, iron losses, power and efficiency, practical problems (current-starting torque vs efficiency, speed control), specific applications (phase shifter and induction regulator, electrical axis - Selsyn, synchronoscope, Leblanc damper)				
	- The single-phase induction motor (1 hour): structure, principle and equations				
	- The synchronous machine (4h): specific design features, equations, equivalent circuits, phasor diagram, operating point (stability), active and reactive power control, connection and control of an alternator on the grid				
	- The DC machine (2h): specific design features, structure, equations, operating and excitation modes, starting universal motor				
	- Introduction, reminder of the basics of electrical circuits (1h)				
	- The single-phase transformers (4h): structure, fundamental laws, models of the ideal transformer, of the perfect transformer and of the real transformer, on load operation, experimental parameter identification				
	- Three-phase transformers (1 hour): structure, connection modes, single-phase equivalent circuit				
	- The general theory of electromechanical converters (2 hours): classification, structure, basic assumptions electrical and mechanical equations, magnetic energy and co-energy, electromagnetic torque				
	- Rotating field machines (4h): general design features, equations, supply, equivalent circuit, saturation synchronous and asynchronous operating modes, main structures of rotating field machines				
	- The three-phase asynchronous machine (5h): specific design features, equations, equivalent circuit, phaso diagram (the circle diagram), torque-speed characteristic, operating point, saturation, iron losses, power and efficiency, practical problems (current-starting torque vs efficiency, speed control), specific applications (phase shifter and induction regulator, electrical axis - Selsyn, synchronoscope, Leblanc damper)				
	- The single-phase induction motor (1 hour): structure, principle and equations				
	 The synchronous machine (4h): specific design features, equations, equivalent circuits, phasor diagram, operating point (stability), active and reactive power control, connection and control of an alternator on the grid The DC machine (2h): specific design features, structure, equations, operating and excitation modes, starting universal motor 				
Inline resources	Moodle https://moodle.uclouvain.be/course/view.php?id=1893				
Bibliography	- Transparents du cours				
Dibilography	 Enoncés et solutionnaires d'exercices Notices de laboratoires et laboratoires virtuels 				
	- Illustrations et compléments au cours				
	- QCM				
	- Livre de référence :				
	B. Dehez, D. Grenier, F. Labrique, E. Matagne, Electromécanique. Principes physiques, Principaux Convertisseu Principales applications, Presses universitaires de Louvain, 1er éd., 372p.				
Faculty or entity in	ELEC				
charge					

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Learning outcomes		
Minor in Engineering Sciences: Electricity (only available for reenrolment)	MINELEC	5		٩		
Specialization track in Electricity	FILELEC	5		٩		
Minor in Electricity	LMINOELEC	5		٩		