UCLouvain

Ichm2152

2021

NMR Complements

3.00 credits 22.5 h + 7.5 h Q1

Teacher(s)	Singleton Michael ;				
Language :	English				
Place of the course	Louvain-la-Neuve				
Main themes	1. Principles and calculations of NMR spectra; 2. 1D NMR pulse sequences (SEFT, APT, INEPT, DEPT); 3. 2D NMR: a) through bond homonuclear (COSY) and heteronuclear correlations; b) through space correlations (NOE, NOESY, ROESY); 4. 1H & 13C NMR spectroscopy; 5. NMR spectroscopy of other nuclei (19F, 15N, 31P); 6. Solid state NMR spectroscopy.				
Learning outcomes	At the end of this learning unit, the student is able to: This course aims at enlarging and deepening the basic notions in NMR so that students should be able to collect and interpret spectra of various complexities.				
Content	1. Introduction and generalities; 2. NMR spectroscopy practical aspects; 3. 1D NMR experiments; 4. 2D NMR experiments: through bond homonuclear and heteronuclear correlations, and through space correlations; 5. Solid state NMR; 6. Theoretical aspects and applications will be connected with practical questions related to the use of a NMR spectrometer and data acquisition.				
Other infos	Background: Basic notions in molecular spectroscopy (CHM1251B). Evaluation: written and oral exams. Documents: complicated schemes (syllabus) may be given along with some textbook references; The course could be partly or totally delivered by an invited lecturer. Other				
Faculty or entity in charge	CHIM				

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Learning outcomes		
Master [120] in Chemistry	CHIM2M	3		Q.		
Master [60] in Chemistry	CHIM2M1	3		0		