Advanced Fuel Cycle/Dismantling/Radiochemistry/MOX/Th (Centre d'étude nucléaire-Mol)

lbnen2023  2021-2022  Autre site

Advanced Fuel Cycle/Dismantling/Radiochemistry/MOX/Th (Centre d'étude nucléaire-Mol)
3.00 credits
Q2
Language
English
Prerequisites
The following BNEN courses are a prerequisite
  • Nuclear Energy: Introduction
  • Nuclear Fuel Cycle
Main themes
MOX and Th fuel
  • Comparison of the physical properties of Pu and Th
  • Possible core designs with Th based fuel with high conversion factors
  • Pu-MOX fuel fabrication (MIMAS process) and fuel rod thermal-mechanical behaviour under irradiation
  • Pu-MOX impact on reactivity coefficients and safety issues
  • Th-MOX impact on reactivity coefficients and overview of the possible safety issues
  •  
Radiochemistry
  • Applied radiochemistry (complementary to the course under "Nuclear Fuel cycle"):  chemical process technology: radiochemical separation techniques, radiochemical analysis, production of radionuclides
  • Radionuclide migration through a clay host rock ' geochemistry and underlying phenomena: impact on the Safety Case; geochemistry in Boom Clay; role of organic matter; radionuclide speciation, sorption and transport; modelling.     
Dismantling, decommissioning
  • Introduction: definitions, objectives, levels, regulatory aspects, radioprotection, ALARA  
  • Radionuclide inventory, characterization and measurements
  • Strategy for decontamination of buildings, concrete pieces and structures, metals
  • Dismantling of a nuclear reactor (the BR3 case): the experience, materials management
  • Other types of installations to be decommissioned, REX from other projects
  • Strategies and planning of decommissioning
Learning outcomes

At the end of this learning unit, the student is able to :

1 MOX and Th fuel
To get a global understanding of the utilization of  Pu and Th based fuel in light water reactors:
  • The challenges of the U-Pu-MOX fuel regarding the fuel fabrication, the core and fuel neutronic aspects and fuel behaviour
  • The Th-Pu-MOX used in LWR for its breeding capabilities, or more realistically as matrix for Pu utilization.  
Radiochemistry and Dismantling
  • To get an understanding of radiochemistry, as it is a basic discipline to understand the various stages and activities in the nuclear fuel cycle, including the safe disposal of the radioactive waste.  
  • To get acquainted with the principles and practice of dismantling and decommissioining of nuclear materials, as this is becoming an activity of increasing importance in nuclear engineering.
 
Evaluation methods
Oral examination; written preparation
Other information
This course is part of the Advanced Master programme in nuclear engineering organized by the Belgian Nuclear Higher Education Network (BNEN).  BNEN is organised through a consortium of six Belgian universities and the Belgian Nuclear Research Centre, SCK-CEN and takes place at the SCK-CEN in Mol.

Prof. Pierre Van Iseghem ' Université de Liège
Prof. Hubert Druenne ' Université de Liège
Bibliography

The PowerPoint presentations of the lectures are available on the BNEN website.

Faculty or entity
EPL


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Learning outcomes
Advanced Master in Nuclear Engineering