5.00 crédits
30.0 h + 30.0 h
Q1
Enseignants
Chatelain Philippe; Deleersnijder Eric; Winckelmans Grégoire;
Langue
d'enseignement
d'enseignement
Anglais
Préalables
Mécanique des fluides et transferts 1 [lmeca1321] or equivalent
Thèmes abordés
- Compressible flows in ducts and nozzles
- Incompressible flows in porous media
- Potential flows
- Introduction to transition, turbulence, and CFD
- Introduction to geophysical and environmental flows
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 | In view of the LO frame of reference of the "Master Mechanical Engineering", this course contributes to the development, acquisition and evaluation of the following learning outcomes: LO1.1, LO1.2, LO1.3 LO2.1, LO2.2, LO2.3, LO2.4, LO2.5 LO3.1, LO3.2 LO4.1, LO4.2, LO4.3, LO4.4 LO5.4, LO5.5, LO5.6 LO6.1, LO6.2 Specific learning outcomes of the course At the end of this learning unit, the student will be able to:
|
Contenu
Compressible flows in ducts and nozzles
- Recall of the conservation equations (mass, momentum, energy).
- Link between isentropic flows at moderate Mach number and ideal incompressible flows.
- 1-D isentropic flow in a converging-diverging Laval nozzle (subsonic, supersonic), sonic conditions and maximum flow rate. Normal shock and jump relations. Operating modes of a nozzle.
- 1-D flow in a duct with wall friction (Fanno).
- Linear case and model (Darcy).
- Extended model for nonlinear case with some inertial effects.
- Examples of applications (e.g., in rock physics, etc.).
- Point vortex, point source/sink, dipole.
- Obtention of flows using a complex potential.
- Flow past a circle: case without circulation; case with circulation and associated lift (Magnus effect) .
- Flow past an airfoil and associated lift.
- Linear stability theory, and examples of application.
- Phenomenology of the transition to turbulence.
- Scales in developed turbulence: energy spectrum and dissipation (Kolmogorov).
- Reynolds-Averaged Navier-Stokes (RANS) equations; also simplified for shear flows (boundary layer, jet, wake, shear layer).
- Closure of the RANS equations and simple models, also near a wall.
- Best Practice Guidelines, and hands-on sessions using a CFD solver.
- Time and space scales of variability.
- Geohydrodynamic equations.
- Turbulence, rotation and stratification.
- Rigid lid and free surface approaches.
Méthodes d'enseignement
voir la version en anglais
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
voir la version en anglais
Ressources
en ligne
en ligne
site Moodle du cours
Bibliographie
Non-exhaustive list:
G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press 1967 (reprinted paperback 1994).
F. M. White, Viscous Fluid Flow, second edition, Series in Mechanical Engineering, McGraw-Hill, Inc., 1991.
P. A. Thompson, Compressible Fluid Dynamics, advanced engineering series, Maple Press, 1984.
D.J. Tritton, Physical Fluid Dynamics, Van Nostrand Reinhold, UK, 1985.
P. G. Drazin, Introduction to Hydrodynamic Stability, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002
P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge University Press, 1985.
S. B. Pope, Turbulent Flows, Cambridge University Press, 2000
M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, 1982.
H. Burchard, Applied Turbulence Modelling in Marine Waters, Springer, 2002
B. Cushman-Roisin and J.-M. Beckers, Introduction to Geophysical Fluid Dynamics - Physical and Numerical Aspects, Elsevier, 2011 (2nd ed.)
A. Dassargues A., Hydrogeology - Groundater Science and Engineering, CRC Press, 2019
H. B. Fisher et al., Mixing in Inland and Coastal Waters, Academic Press, 1979
P. Kundu et al., Fluid Mechanics, Elsevier, 2015 (6th ed.)
C. Zheng and G.D. Bennett, Applied Contaminant Transport Modeling, Wiley – Interscience, 2002
G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press 1967 (reprinted paperback 1994).
F. M. White, Viscous Fluid Flow, second edition, Series in Mechanical Engineering, McGraw-Hill, Inc., 1991.
P. A. Thompson, Compressible Fluid Dynamics, advanced engineering series, Maple Press, 1984.
D.J. Tritton, Physical Fluid Dynamics, Van Nostrand Reinhold, UK, 1985.
P. G. Drazin, Introduction to Hydrodynamic Stability, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002
P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge University Press, 1985.
S. B. Pope, Turbulent Flows, Cambridge University Press, 2000
M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, 1982.
H. Burchard, Applied Turbulence Modelling in Marine Waters, Springer, 2002
B. Cushman-Roisin and J.-M. Beckers, Introduction to Geophysical Fluid Dynamics - Physical and Numerical Aspects, Elsevier, 2011 (2nd ed.)
A. Dassargues A., Hydrogeology - Groundater Science and Engineering, CRC Press, 2019
H. B. Fisher et al., Mixing in Inland and Coastal Waters, Academic Press, 1979
P. Kundu et al., Fluid Mechanics, Elsevier, 2015 (6th ed.)
C. Zheng and G.D. Bennett, Applied Contaminant Transport Modeling, Wiley – Interscience, 2002
Support de cours
- G. Winckelmans, "Compressible flows", lecture notes (version 2020)
- G. Winckelmans, "2-D incompressible and irrotational flows", lecture notes (version 2021)
- G. Winckelmans, "Introduction to hydrodynamic stability", lecture notes (in French)
- G. Winckelmans and Y. Bartosiewicz, "Turbulent flows: equations for the time-averaged velocity and temperature fields", lecture slides as complement to the lecture notes of lmeca1321 (version 2021)
- E. Deleersnijder, 2021, "Modelling transport processes in geophysical and environmental flows" (slides, problems, appendices, animations)
Faculté ou entité
en charge
en charge
MECA