Vehicle System Dynamics

lmeca2215  2021-2022  Louvain-la-Neuve

Vehicle System Dynamics
5.00 crédits
30.0 h + 30.0 h
Q1
Enseignants
Fisette Paul;
Langue
d'enseignement
Anglais
Thèmes abordés
Notions théoriques fondamentales en vue d'étudier la dynamique des véhicules.
Pour les deux classes de véhicules envisagées (routier et ferroviaire) :
  • Bref historique et technologie (orientée dynamique)
  • Description et analyse des phénomènes et comportements dynamiques typiques - Modèles " macro " de véhicules : masses suspendues, non suspendues, ...
  • Modèles spécifiques liés au contact ave le sol (route et rail respectivement)
  • Mise en évidence par modèle des comportements dynamiques typiques et étude de sensibilité de paramètres Dynamique de véhicules particuliers (routiers : les " 2 roues ", les attelages ; ferroviaires : métro pneu-rail, MagLev, ... ou de situations particulières (véhicules sur terrain meuble ou accidenté, véhicules à chenilles ... ). Modélisation multiphysique de véhicules : applications à des cas précis (suivant les années) - ex. : les suspensions pneumatiques en ferroviaire - ex. : les suspensions hydrauliques en automobile - ex. : les suspensions semi-actives en automobile La dynamique vue par les industriels (domaines ferroviaire et automobile)
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1 Eu égard au référentiel AA du programme « Master ingénieur civil mécaniciens », ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants :
  • AA1.1, AA1.2, AA1.3
  • AA2.1, AA2.2, AA2.3
  • AA3.1,  AA3.3
  • AA4.1, AA4.2, AA4.3, AA4.4
  • AA5.2, AA5.3, AA5.6
  • AA6.3, AA6.4
Plus précisément, au terme du cours, l'étudiant sera capable de maîtriser les phénomènes cinématiques et dynamiques qui sont responsables du comportement des véhicules routiers (essentiellement sur pneus) et ferroviaires, en termes de stabilité, tenue de route et confort.
Outre la compréhension de ces phénomènes, il sera également à même de les traduire en modèles mathématiques et ensuite en programmes informatiques pour mettre en évidence divers comportements et comprendre les fonctions de certains organes clés liés à la dynamique des véhicules.
 
Contenu
  1. Introduction : rappel des notions de base en cinématique tridimensionnelle, en dynamique multicorps, en vibration et en méthodes numériques, en vue des objectifs du cours : stabilité, tenue de route et confort des véhicules
  2. Véhicules ferroviaires - Technologie : caisses, bogies, essieux, suspensions primaires, secondaires, voies et défauts de voie, morphologies (tram, métro, lignes classiques, trains grandes vitesses) ; grandeurs caractéristiques: charges, Y/Q, vitesses critiques
  3. Véhicules ferroviaires - Modèle " macro " : caisses/bogies/essieux/contact simple, modèle simplifié d'essieu (stabilité) et modèle vertical (confort)
  4. Véhicules ferroviaires - Modèles spécifiques : contact roue/rail essieux-voie, roue indépendante-rail, modèle de second contact bourrelet/rail, modèle en courbe, modèles de suspensions primaire/secondaire
  5. Véhicules ferroviaires - Modèles spécifiques (suite)
  6. Véhicules ferroviaires - Exploitation des modèles : validations modèle versus expérimentation, analyse de sensibilité de paramètres, compréhension et mise en évidence des phénomènes fondamentaux
  7. Véhicules routiers - Technologie : suspensions (classification), rôle du pneumatique, anti-roulis, etc. et grandeurs caractéristiques (chasse, pinçage, centre de roulis, caractère sur/sous vireur
  8. Véhicules routiers - Modèle " macro " : masses suspendues/non suspendues, géométrie des suspensions, centres de roulis géométrique
  9. Véhicules routiers - Modèles spécifiques : cinématique 3D des diverses morphologie de suspension : McPherson, multi-points, bras superposés, bras tirés, modèles de barre anti-roulis; modèles de contact pneu-sol : exposé des divers modèles (latéral, vertical, longitudianl, combinés) et comparaisons ; modèles de caisses (flexibles)
  10. Véhicules routiers - Modèles spécifiques (suite)
  11. Véhicules routiers - Exploitation des modèles : validations modèle versus expérimentation, analyse de sensibilité de paramètres, compréhension et mise en évidence des phénomènes fondamentaux (caractère sur/sous vireur, comportement en virage (entrée, stabilisé, sortie, influence de l'anti-roulis), performances en terme de confort sur profils routiers spécifiques (obstacle, pavés, etc.)
  12. Véhicules particuliers - Technologie et Modèles : 2-roues (stabilité, effet gyroscopique, modèles de contact au sol, '), et/ou attelage (stabilité latérale, phénomène de jacknifing) et /ou métro sur pneu et roue fer (modèle combiné pneu - rail et latéral/vertical) et/ou véhicules sur chenilles sur terrains meubles (modèle de contact, modèle géométrique de sol et constitutif de contact)
  13. Séminaire sur la modélisation hybrides : 2 applications détaillées (problématique - modèle - résultats - analyse) : ces exposés seront étroitement liés aux recherches en cours au CEREM
  14. Séminaire industriel : la dynamique ferroviaire du point de vue du constructeur (Bombardier-Eurorail, France) ou les suspensions dans l'automobile (Tenneco-Automotive, Sain-Trond, Belgique)
Méthodes d'enseignement
  • 13 ou 14 cours théoriques/séminaires industriels
  • 1 Projet en dynamique des véhicules: bibliographique ou de modélisation
Modes d'évaluation
des acquis des étudiants
L'évaluation est un examen oral à livre ouvert :
  • Le cours théorique compte pour 60% des points
  • Le projet compte pour 40% des points
Autres infos
Des séminaires donnés par des industriels du domaine sont organisés chaque année.
Faculté ou entité
en charge
MECA


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] : ingénieur civil mécanicien

Master [120] : ingénieur civil électromécanicien