5.00 crédits
30.0 h + 22.5 h
Q2
Enseignants
Glineur François;
Langue
d'enseignement
d'enseignement
Français
Préalables
Ce cours suppose acquises les notions élémentaires d'analyse réelle et d'algèbre linéaire telles qu'enseignées dans les cours LEPL1101, LEPL1102 et LEPL1105.
Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Thèmes abordés
- Concepts de base et typologie des problèmes d'optimisation ; distinction entre aspects modèles et méthodes.
- Optimisation linéaire : formulations, géométrie, algorithme du simplexe, dualité et optimisation discrète
- Optimisation non-linéaire : conditions d'optimalité, convexité, méthodes de résolution et implémentation.
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
Eu égard au référentiel AA, ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants : AA1.1, AA1.2, AA1.3 AA2.2, AA2.4, AA2.5 A5.3, AA5.4, AA5.5 Plus précisément, au terme du cours, l'étudiant sera capable de :
|
Contenu
Optimisation linéaire :
Introduction, formes canoniques, géométrie des polyèdres, algorithme du simplexe, dualité et analyse de sensibilité, introduction à l'optimisation discrète (branch & bound).
Optimisation non-linéaire :
Modèles : définitions et terminologie, conditions d'optimalité pour problèmes sans et avec contraintes ; reconnaître et exploiter la convexité d'un problème.
Méthodes : méthodes de recherche en ligne pour problèmes sans contraintes (méthodes du gradient, de Newton et de quasi-Newton) ; propriétés de convergence (locale et globale) ; détails d'implémentation ; introduction à d'autres types méthodes.
Introduction, formes canoniques, géométrie des polyèdres, algorithme du simplexe, dualité et analyse de sensibilité, introduction à l'optimisation discrète (branch & bound).
Optimisation non-linéaire :
Modèles : définitions et terminologie, conditions d'optimalité pour problèmes sans et avec contraintes ; reconnaître et exploiter la convexité d'un problème.
Méthodes : méthodes de recherche en ligne pour problèmes sans contraintes (méthodes du gradient, de Newton et de quasi-Newton) ; propriétés de convergence (locale et globale) ; détails d'implémentation ; introduction à d'autres types méthodes.
Méthodes d'enseignement
Cet enseignement est organisé autour de séances de cours, de séances d'exercices et de laboratoires informatiques supervisés, ainsi que d'un projet à réaliser par petits groupes. Une consultance est offerte pour un soutien dans la réalisation du projet.
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
Les étudiants sont évalués individuellement lors d'un examen écrit sur base des acquis d'apprentissage énoncés plus haut. En outre, les étudiants réalisent un projet durant le second quadrimestre, comptabilisé dans la note finale (pour un tiers) pour chaque session..
Ressources
en ligne
en ligne
Bibliographie
- Introduction to Linear Optimization, Dimitri Bertsimas and John Tsitsiklis, Athena Scientific, 1997.
- Linear Programming. Foundation and Extensions, Robert Vanderbei, Kluwer Academic Publishers, 1996.
- Integer Programming, Laurence Wolsey, Wiley, 1998.
- Numerical Optimization, Jorge Nocedal et Stephen J. Wright, Springer, 2006.
- Convex Optimization, Stephen Boyd et Lieven Vandenberghe, Cambridge University Press, 2004.
Faculté ou entité
en charge
en charge
MAP
Programmes / formations proposant cette unité d'enseignement (UE)
Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
d'apprentissage
Master [120] : ingénieur civil en chimie et science des matériaux
Master [120] : ingénieur civil électricien
Mineure en sciences de l'ingénieur : mathématiques appliquées (accessible uniquement pour réinscription)
Master [120] : ingénieur civil en informatique
Approfondissement en sciences informatiques
Approfondissement en statistique et sciences des données
Approfondissement en sciences mathématiques
Master [120] en sciences informatiques
Mineure en Mathématiques appliquées
Filière en Mathématiques Appliquées