UCLouvain

lbres2204 Gestion intégrée des ressources en eaux 2021 Q1 4.00 crédits 22.5 h + 22.5 h

Enseignants	Jonard François ;Vanclooster Marnik (coordinateur(trice)) ;				
Langue d'enseignement	Français				
Lieu du cours	Louvain-la-Neuve				
Préalables	Cours de base en probabilité et statistiques Cours de base en modélisation, programmation, et informatique.				
Thèmes abordés	L'objectif principal du cours est de former des ingénieurs capables de comprendre et de relever les défis liés à la gestion des ressources en eau au 21 ième siècle en se plaçant à l'interface entre les politiques de l'eau (par ex. développement durable), les outils analytiques (par ex. l'optimisation), et les systèmes d'information (par ex. les systèmes d'aide à la décision). Les thèmes abordés sont :				
	- Concepts et enjeux de la gestion intégrée des ressources en eau à l'échelle de l'unité de gestion de grande taille (les systèmes de barrage, le périmètre agricole, le bassin versant, le continent).				
	 Aspects stratégiques, politiques et institutionnels de la gestion intégrée des ressources en eau. Modélisation des ressources en eau de grande taille (bassins versants, barrages, périmètre, nappes phréatiques): aspects techniques, économiques et sociaux. Application à l'analyse, la planification, à l'optimisation et à l'évaluation des hydrosystèmes. 				
Acquis	A la fin de cette unité d'enseignement, l'étudiant est capable de :				
d'apprentissage	 a. Contribution de l'activité au référentiel AA (AA du programme) M2.2; M2.3; M2.4; M2.5 b. Formulation spécifique pour cette activité des AA du programme (maximum 10) A la suite du cours, les étudiants doivent être capables : 				
	 - d'expliciter le concept de la gestion intégrée des ressources en eau (GIRE); - d'expliciter les aspects politiques, institutionnels, légaux et stratégiques associés à la gestion intégrée des ressources en eau; - d'élaborer des politiques, des stratégies et des programmes de développement durable des ressources en eau; 				
	- d'illustrer les programmes de coopération internationale dans le domaine de la gestion intégrée des ressources en eau des grands bassins (p.ex. Le Mekong, Le Nil);				
	 de modéliser un hydro-système, tout en considérant la nature aléatoire des flux; d'appliquer des méthodes d'optimisation (programmation dynamique, multiplicateurs lagrangiens, programmation linéaire), aux problèmes simples de planification dans le domaine des ressources en eau; de confronter les performances d'un hydro-système avec les critères et objectifs multiples formulés 				
	par plusieurs acteurs ;				
	 de développer une méthodologie pour résoudre les problèmes hydrologiques complexes en vue de formuler les politiques, des stratégies et des programmesde gestion des ressources en eau qui respectent les objectifs multiples. 				
Modes d'évaluation des acquis des étudiants	Partie théorique: Examen oral avec préparation écrite. Partie exercice: L'étudiant reçoit avant la séance d'examens l'exercice qu'il prépare et défend oralement avar l'assistant				
Méthodes	Cours théorique :				
d'enseignement	 Exposés magistraux. En raison de la capacité limitée d'accueil des auditoires (crise COVID-19), certains cours peuvent se donner à distance. Support par des capsules vidéos Support des exercices en ligne (Moodle, Python Notebooks) 				
	Travaux pratiques : Exercices en salle informatique.				
Contenu	Partie I : Enjeux, aspects stratégiques, politiques et institutionnels				
	 Etat des ressources en eau douce à l'échelle globale et régionale Etat des usages actuels et des besoins futurs en eau douce à l'échelle mondiale et régionale 				

Université catholique de Louvain - Gestion intégrée des ressources en eaux - cours-2021-lbres2204

	 Etat des infrastructures hydrauliques et des besoins en investissements Enjeux et défis du 21ème siècle Principes de Gestion Intégrée des Ressources en Eau (GIRE) Cadre institutionnel, politique et légal de la gestion de l'eau Elaboration de stratégies et programmes de gestion et de développement des ressources en eau Coopération internationale pour la gestion de l'eau. Exemples de coopération pour la gestion des ressources en eau : le Mékong / le Nil Partie II : Outils de modélisation, de gestion et d'optimisation de la gestion Aspects de la modélisation de l'hydrosystème Hydro-informatique et gestion. Apports de la télédétection. Méthodes de programmation, de planification et d'optimisation. Multiplicateurs lagrangiens. Programmation linéaire. Programmation dynamique. Aspects stochastiques. Analyse d'incertitudes et analyse de sensibilité. Analyse de risque hydrique. Analyse de performance. Analyse multicritère et intégrée des ressources en eau.
Ressources en ligne	Moodle • Copie des transparents • Capsule vidéos • Exercices (Python Notebooks) • Enoncés des travaux pratiques • Lien vers l'ouvrage de référence (https://link.springer.com/book/10.1007/978-3-319-44234-1)
Bibliographie	D. Loucks and E. Van Beek: Water Resources System Planning and Management: An introduction to methods, models and applications. UNESCO, 2005.
Autres infos	Ce cours peut être donné en anglais.
Faculté ou entité en charge:	AGRO

Programmes / formations proposant cette unité d'enseignement (UE)						
Intitulé du programme	Sigle	Crédits	Prérequis	Acquis d'apprentissage		
Master [120] : bioingénieur en sciences agronomiques	BIRA2M	4		Q		
Master [120] : bioingénieur en sciences et technologies de l'environnement	BIRE2M	4		Q		
Master [120] : ingénieur civil des constructions	GCE2M	4		Q.		
Master [120] : bioingénieur en gestion des forêts et des espaces naturels	BIRF2M	4		٩		
Master [120] en sciences agronomiques et industries du vivant	SAIV2M	5		٩		