Data analysis: measure patterns

lpsys2144  2020-2021  Louvain-la-Neuve

Data analysis: measure patterns
Due to the COVID-19 crisis, the information below is subject to change, in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).
6 credits
45.0 h + 15.0 h
Q1
Teacher(s)
Caesens Gaëtane; Grégoire Jacques; Penta Massimo; Penta Massimo (compensates Grégoire Jacques);
Language
French
Main themes
Item response models, particularly the Rasch model, for the construction of measurement scales
Factor analysis, structural equation models
Aims

At the end of this learning unit, the student is able to :

1 A2 : etc...ceci doit être rédigé de manière commune pour tous les cours et donc je suppose par l'instance responsable de l'adoption de ces définitions
 
Content
The course combines lectures, articles, an introduction to using the software (in particular SPSS, R) and the analysis of real data by the students themselves. A theoretical and methodological framework is provided to promote student activity in the analysis and interpretation of data.
The Rasch and IRT models
The students discover the classical approach (Cronbach's alpha) and the modern approach (Rasch, IRT) through examples of analysis of a quantitative questionnaire. They will also discover the psychometrical foundations of scaling involved in interpreting answers to a questionnaire (unidimensionality criterion, fit indices, differential functioning, dichotomous and polytomous item analysis).
Factor analysis
The postulates and implications of exploratory and confirmatory factor analysis models. Common practice and specifici procedures (eg: rotations, parallel analysis...) as well as technical difficulties.
Common applications of the procedures and their software imlmentation with a critical approach to tjeresults, fit, and interpretation.
Teaching methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

Lectures, readings, demonstrations
Evaluation methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

Written exam with multiple choice and/or open questions according to the sections.
It is required to pass succesfully both parts of the course.
Other information
Either this course or Data Analysis: Prediction Models is a prerequisite the the Advanced Workshop of methods and analysis
The present course requires knowledge of basic concepts and methods in statistics and classical psychometrics. Namely
LPSP1011 Statistique : Analyse descriptive de données quantitatives 
LPSP1209 Statistique, inférence sur une ou deux variables 
LPSP1212 Psychométrie 
Online resources
Check Moodle
Faculty or entity
EPSY


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Master [120] in Psychology

Master [120] in Education (shift schedule)