Special topics in quantum optics

lphys2247  2020-2021  Louvain-la-Neuve

Special topics in quantum optics
Due to the COVID-19 crisis, the information below is subject to change, in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).
5 credits
30.0 h
Q2
Teacher(s)
Piraux Bernard;
Language
English
Main themes
Classical and quantum description of light-matter interaction, Floquet theory, dressed state model, coherent and squeezed states, statistical properties of light.
Aims

At the end of this learning unit, the student is able to :

1 a.     Contribution of the teaching unit to the learning outcomes of the programme (PHYS2M and PHYS2M1)
AA 1.1, AA 1.2, AA 1.5, AA1.6, AA 3.1, AA3.2, AA 3.3, AA 3.4, AA 4.2, AA 5.2, AA 5.4, AA 8.1
b.    Specific learning outcomes of the teaching unit
At the end of this teaching unit, the student will be able to :
1.     handle the description of laser-matter interaction using perturbative and non perturbative approaches ;
2.     apply the dressed state model to various laser-atom interaction processes ;
3.     use the quantification of light to describe coherent and squeezed states.
 
Content
Light-atom interaction.
Classical model.
Semi-classical model
    1. Time-dependent and time-independent perturbation theory
    2. Level-shift operator
    3. Floquet theory
Quantum model
    1. Field quantization
    2. Dressed state model
    3. Coherent states
    4. Squeezed states
Statistical properties of light
Teaching methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

Lectures and exercises to be prepared at home before they are solved during the lectures.
Evaluation methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

Oral exam during which the student presents a work, the subject of which has been specified during the last lecture.
Online resources
The lecture notes
Bibliography
M. Fox, Quantum Optics, an introduction, Oxford Master Series in Atomic, Optical, and Laser Physics, 2006.
M. Fox , Optique quantique. Une introduction , trad. B. Piraux, De Boeck Université, 2011.
M.O. Scully & M.S. Zubairy «  Quantum Optics », Cambridge University Press, 1997.
C. Cohen-Tannoudji, Bernard Diu, Franck Laloë, Mécanique quantique – Tome III,  CNRS Editions, EDP Sciences - Collection : Savoirs actuels, 2017.
C. Cohen-Tannoudji, J. Dupont-Roc & G. Grynberg,  Processus d’interaction entre photons et atomes , CNRS Édition,  EDP Sciences, collection : Savoirs actuels, 2001.
G. Grynberg, A. Aspect, C . Fabre, Introduction to Quantum Optics, Cambridge University Press, 2010.
Faculty or entity
PHYS


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Master [60] in Physics

Master [120] in Physics