Aerospace dynamics.

lmeca2830  2020-2021  Louvain-la-Neuve

Aerospace dynamics.
Due to the COVID-19 crisis, the information below is subject to change, in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).
5 credits
30.0 h + 30.0 h
Q1
Teacher(s)
Chatelain Philippe; Schrooyen Pierre (compensates Chatelain Philippe);
Language
English
Main themes
  • Universal gravitation and applications.
  • Aircraft dynamics : equilibrium, stability and control.
  • Launchers.
  • Satellite orbits and attitude stability.
Aims

At the end of this learning unit, the student is able to :

1 In consideration of the reference table AA of the program "Masters degree in Mechanical Engineering", this course contributes to the development, to the acquisition and to the evaluation of the following experiences of learning:
  • AA1.1, AA1.2, AA1.3
  • AA2.1, AA2.2, AA2.3
  • AA3.1, AA3.3
  • AA5.1, AA5.2, AA5.4
  • AA6.1, AA6.2
Introduce students to the specific issues of aircraft dynamics, launcher systems and dynamics, and satellite dynamics.
 
Content
  • Summary of rigid body mechanics.
  • Aircraft dynamics and performance : aerodynamic loads, translational and rotational dynamics, steady state motion, propulsion, stability, controls.
  • Launcher dynamics and staging optimisation.
  • Satellite dynamics : orbits, transfers, rendezvous, attitude stability.
Evaluation methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

The final evaluation is based on a written exam and 3 homeworks. The homework assignments are individual and mandatory. A report must be produced for each within a specified time frame and the marks are definitive (these assignments cannot be retaken).
The exam is subdivided into 2 parts:
  • theoretical questions
  • exercises: performance, stability, control...
In case of technical issues or in case of fraud suspicion, the lecturers may reserve the right to replace the written exam by an oral exam.
 
 
Other information
Programming skills in matlab or python are recommended
 
Bibliography
  • J.D. ANDERSON, Introduction to Flight
  • B. ETKIN Dynamics of Flight - Stability and Control
  • L. GEORGE, J-F VERNET, J-C WANNER La mécanique du vol
  • J.W. CORNELISSE, H.F.R. SCHÖYER, K.F. WAKKER Rocket Propulsion and Spaceflight Dynamics
Faculty or entity
MECA


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Master [120] in Electro-mechanical Engineering

Master [120] in Mechanical Engineering