Multibody system Dynamics

lmeca2802  2020-2021  Louvain-la-Neuve

Multibody system Dynamics
Due to the COVID-19 crisis, the information below is subject to change, in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).
5 credits
30.0 h + 30.0 h
Q2
Teacher(s)
Fisette Paul;
Language
English
Main themes
Definition and classification of multibody systems. Description of the various methods used by multibody softwares. Multibody formalisms for tree-like multobody systems (e.g. serial robot manipulators) and closed-loop systems (e.g. parallel manipulators, vehicles,...) : automatic computer generation of the dynamical eduations and numerical integration algorithms for differential-algebraic equations (DAE)
Aims

At the end of this learning unit, the student is able to :

1 In consideration of the reference table AA of the program "Masters degree in Mechanical Engineering", this course contributes to the development, to the acquisition and to the evaluation of the following experiences of learning:
  • AA1.1, AA1.2, AA1.3
  • AA2.3, AA2.4, AA2.5
  • AA3.2, AA3.3
  • AA5.1, AA5.2, AA5.3
  • AA6.2, AA6.4
Give students a complementary education in the field of mechanics of systems of rigid bodies (geometry, kinematics, dynamics) bu studying the modelling aspects of complex articulted systems.
Develop the sutdents capacities in designing, writing and/or using multibody modelling software for robots, vehicles, suspensions systems and other mechanisms, with a view to their geometrical, kinematical and dynamical analysis.
 
Content
  1. Definition and classification of multibody systems (NBS). Principal characteristics of the computer programs used in modelling and analyzing multibody systems.
  2. Multobody formalisms for tree-like systems (e.g. serial robots) or closed-loop mechanisms (e.g. vehicles) - definition of barycentric quantities - automatic generation of the dynamical equations using the Lagrange multipliers technique (use of the virtual power principle and Newton-Euler recursive algorithm).
  3. Coordinate partitioning method.
  4. Numerical analysis : equilibrium, modal analysis, time simulation, inverse dynamics.
  5. Particular applications : serial and parallel robots, road vehicles, railway vehicles, multibody systems with flexible elements.
Students must choose a project (for 1 or 2 students) dealing with the modeling and analysis of a multibody system or with the reading and the synthesis of a couple of scientific publications.
Evaluation methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

Exam : oral examination. The exam consist of two parts: an examination on the theory (with lecture notes available) and a discussion about the project (theory, modelling and software implementaiton). support : lecture notes and copies of the slides used during the lectures.
Bibliography
Référence de base :
  • P. Fisette et J.C. Samin : Symbolic Modelling of Multibody Systems, à paraître chez Klawer Academic Press.
Références (conseillées) :
  • Parviz E. Nikravesh, Computer-Aided Analysis of Mechanical Systems, Prentice Hall Inc., 1988.
  • Haug, E.-J. : Computer Aided Kinematics and Dynamics of Mechanical Systems, Allyn and Bacon, Boston, 1989.
Faculty or entity
MECA


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Master [120] in Electro-mechanical Engineering

Master [120] in Biomedical Engineering

Master [120] in Mechanical Engineering