Internal combustion engines

lmeca2220  2020-2021  Louvain-la-Neuve

Internal combustion engines
Due to the COVID-19 crisis, the information below is subject to change, in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).
5 credits
30.0 h + 30.0 h
Q2
Teacher(s)
Contino Francesco; Jeanmart Hervé;
Language
English
Main themes
Components analysis, thermodynamics and general mechanics, energetic study, basic gauging, calculation of performances and diagnostic principles. Use of fuels and analysis of their combustion in engines: physicochemical, technological, energetic and environmental aspects
Aims

At the end of this learning unit, the student is able to :

1 In consideration of the reference table AA of the program "Masters degree in Mechanical Engineering", this course contributes to the development, to the acquisition and to the evaluation of the following experiences of learning:
  • AA1.1, AA1.2, AA1.3
  • AA2.1,  AA2.3, AA2.5
  • AA3.1, AA3.2
  • AA5.3, AA5.4, AA5.6
  • AA6.1, AA6.2, AA6.3
Provide an analytical description of the functioning of internal combustion engines, as well as the principles of the evaluation of their performances and their basic gauging. Develop the capacity to integrate the various branches of mechanics allowing to structure the description of internal combustion engines, to master its conceptual aspects and to model its behaviour.
 
Content
The course is composed of two parts:
1. Components analysis, thermodynamics and general mechanics:
- main kinematics chain and functional auxiliaries
- thermodynamics cycles, parietal effects, energy fluxes
- breathing: operation modes, suction and supercharging
- frictions, general architecture, main dimensions.
2. Use of fuels:
- combustibility properties and studies of combustion modes
- study of abnormalities and optimisation of combustion laws
- supercharging technology and control of polluting emissions.
The first part of the presentation gives the necessary bases for the calculations carried out during tutorials under the form of exercises or case studies.
The tutorials integrate in parallel the technological aspects of the second part of the course.
Teaching methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

Teaching is based on lectures, exercises and assignments. 
 
Evaluation methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

The evaluation is based on : 
- an oral exam on the theoretical knowledge with one of the course supervisors
- a written exam on practical implementation of the course material 
- evaluation of the assignements. 
The weighting of each part is announced to students at the beginning of the academic year. 
Special circumstances may lead to changes in the nature of the exam. For example, the oral exam could become written, the practice exam could be cancelled, etc. Students will be notified in due course. 
Other information
Syllabus du cours disponible au SICI
Bibliography
Reference books for this course: 

. R. van Basshuysen, F. Schäfer, Internal Combustion Engine Handbook. Basics, Compontents, Systems, and Perspectives, SAE International, 2002.
. C. R. Ferguson, Internal Combustion Engines. Applied Thermosciences, John Wiley & Sons, 1986.
. J. B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill Book Company, 1988.
. R. Stone, Introduction to International Combustion Engines, 4th Edition, Palgrave Macmillan, 2012.
Teaching materials
  • syllabus (in French) available on the moodle site
Faculty or entity
MECA


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Master [120] in Electro-mechanical Engineering

Master [120] in Mechanical Engineering