Structural Materials and Geomaterials

lgciv1031  2020-2021  Louvain-la-Neuve

Structural Materials and Geomaterials
Due to the COVID-19 crisis, the information below is subject to change, in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).
5 credits
30.0 h + 30.0 h
Q2
Teacher(s)
Rattez Hadrien; Saraiva Esteves Pacheco De Almeida João;
Language
French
Prerequisites
Basic notions of the mechanics of solids and fluids
Main themes
The objective of the course is to study fundamental scientific and technical aspects linked to the understanding and analysis of structural materials and geomaterials in construction.
The course aims at providing future engineers with an essential background on mechanics, geomechanics and properties of construction materials that will be useful throughout their study curriculum and professionally when managing civil engineering projects.
Aims

At the end of this learning unit, the student is able to :

1 Contribution of the course to the program objectives (N°):
AA1.1, AA1.2, AA3.1, AA3.3, AA4.1, AA4.2, AA4.3, AA4,4, AA5.3, AA5.5, AA6.1
Specific learning outcomes of the course
At the end of the course, students will be capable of:
  • Identify the main categories of materials (ductile, fragile, others), constitutive relations, and fundamental mechanical properties.
  • Characterizing material stress and strain states, time-dependent behaviour (creep, relaxation, recovery), thermal effects, and accounting for the presence of shear in 2D and 3D.
  • Understanding the process of failure of ductile and brittle materials and applying suitable yield and failure criteria.
  • Describing the main physical and mechanical properties of solid materials used in structural engineering (steel, concrete, masonry, wood, etc) and geomaterials.
  • Establishing the link between theoretical formulations of mechanical properties and their empirical evaluation through laboratory testing. 
  • Identifying the main types of rocks and minerals, and describing their formation processes and the impact on the mechanical, hydraulic and physical properties.
  • Describing a geological structure based on the reading of a geological map, and the impact of this structure on some civil engineering projects.
  •  Describing and analysing the interaction of water and geomaterials.
  • Describing and applying the concept of stress in geomaterials
 
Content
The course is organised in two parts:
1. Stress states, constitutive relations, and failure criteria:
- Properties and mechanical behaviour of structural materials and geomaterials.
- Shear stress and strain, plane stress, principal stress and maximum shear stress, Mohr’s circle for plane stress, triaxial stress, plane strain.
- Thermal effects, time-dependent behaviour (creep, relaxation, recovery), stress concentrations, etc.
- Failure criteria for ductile and brittle materials: Tresca, Von Mises, Rankine, Mohr-Coulomb, etc. Influence of repeated loading and fatigue.
- Stress in soil, total stress, pore water pressure and effective stress.
2. Origins and characteristics of main structural materials and geomaterials:
- Steel: composition, production, use, properties.
- Concrete: composition, use, properties.
- Masonry and Wood.
- Genesis and genetic classification of rocks: igneous rocks, sedimentary rocks, and metamorphic rocks. Main physical properties of rocks. Rock identification. Soil formation.
- Interpretation of geological maps. 
- Physical characterization of soils: Particle size distribution of fine and coarse soils, consistency, soil classification. Volume mass relationships, soil compaction.
- Soil-water interaction, capillarity, Darcy law, 1D groundwater flow, laboratory hydraulic conductivity test, introduction to 2D groundwater flow (flownets).
Teaching methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

Lectures and exercise sessions in classroom, as well as laboratory sessions at LEMSC.
Evaluation methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

Continuous assessment and final written exam.
NOTE: These instructions take into account a “green” or "yellow" Covid scenario at UCLouvain. Modifications can be made in case of “orange” or “red” scenario, or restrictions in classroom capacities.
Online resources
Available on Moodle
Faculty or entity
GC


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Minor in Construction

Bachelor in Engineering : Architecture

Minor in Engineering Sciences: Construction (only available for reenrolment)

Specialization track in Construction