UCLouvain

Igbio2010

2020

Bioinformatics

Due to the COVID-19 crisis, the information below is subject to change, in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).

Teacher(s)	Dupont Pierre ;				
Language :	English				
Place of the course	Louvain-la-Neuve				
Main themes	Introduction to molecular biology Searching methods in biological databases Sequence comparisons, sequence alignment algorithms Motif search Hidden Markov models Gene expression measurement technology Transcriptome analysis methods Inference of interaction networks Phylogeny				
Aims	With respect to the AA referring system defined for the Master in biomedical engineering, the course contributes to the development, mastery and assessment of the following skills: • AA1.1, AA1.2, AA1.3 • AA2.2, AA2.4 • AA4.3 • AA5.3 At the end of this course, students will be able: - to master the basic concepts of molecular biology for appropriate use of bioinformatics tools, - to design and develop tools or methods for database management, information extraction and data mining, - to formulate informed decisions between the many computational methods that are available for solving biological questions, - to carry out a collaborative project aiming at the resolution of a bioinformatics problem and taking benefit from complementary student's education and expertise, - to use the information available in major sequence databases (Genbank, Uniprot) with a critical mind and with discernment, - to master a software environment such as R (Bioconductor). The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".				
Evaluation methods	Due to the COVID-19 crisis, the information in this section is particularly likely to change. The final grade consists of • 25% for computing projects implemented in groups during the semester • 75% for the final exam The projects cannot be re-implemented for the second session. Hence, the project grade is fixed at the end of the semester. The final exam is, by default, a written exam (on paper or, when appropriate, on a computer). These evaluation rules are subject to possible updates due to the sanitary situation. In particular, the relative weights between the projects and the final exam could be adapted. Such possible updates would be notified to the students by a general announcement posted on the Moodle site of this course.				

Teaching methods	Due to the COVID-19 crisis, the information in this section is particularly likely to change. Lectures and computing projects.			
	The projects are made in groups of (max) 2 students to implement, possibly to adapt, concrete algorithms covered in the course lectures. The projects are implemented in R. An R tutorial is included at the beginning of the first project.			
	By default, <i>lectures</i> can be followed face to face in the auditorium announced in the official schedule. Depending on the actual number of registered students and the evolution of the sanitary situation, students will be able to follow the lectures as well remotely on Teams. Practical <i>projects</i> are submitted on line and evaluated on the Inginious platform.			
Content	Overview of basic concepts in molecular biology Search in biological databases Sequence comparison, pairwise and multiple sequence alignments Hidden Markov models Phylogenetic tree inference algorithms Gene expression analysis methods (transcriptomics) Biomarker selection Predictive modeling			
Inline resources	Moodle http://moodleucl.uclouvain.be/course/view.php?id=8915			
Bibliography	Recommended textbooks - Ouvrages complémentaires conseillés : - Biological Sequence Analysis : Probabilistic Models of Proteins and Nucleic Acids, R. Durbin et al., Cambridge University Press, 1998. - Inferring Phylogenies, J. Felsenstein, Sinauer Associates; 2nd ed., 2003. - Bioinformatics, Sequence and Genome Analysis, D. Mount, Cold Spring Harbord Laboratory Press, 2nd ed., 2004. - Introduction to Computational Genomics : a case-study approach, N. Cristianini M. Hand, Cambridge University Press, 2007.			
Faculty or entity in charge	GBIO			

Force majeure

Teaching methods	Lectures are given online and can be followed remotely . Computing projects are submitted online on the Inginious platform.
Evaluation methods	The final exam is an open book exam to be made individually online . The material for this final exam is the same as in the normal situation (see "supports de cours"). The global grade for the course is based on the projects implemented during the semester (50 %) + on the individual final exam (50 %). The projects cannot be re-implemented for the second session. Hence, the project grade is fixed at the end of the semester.

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Aims		
Master [120] in Computer Science and Engineering	INFO2M	5		٩		
Master [120] in Computer Science	SINF2M	5		٩		
Master [120] in Mathematical Engineering	MAP2M	5		٩		
Master [120] in Data Science Engineering	DATE2M	5		٩		
Master [120] in Data Science: Information Technology	DATI2M	5		٩		
Master [120] in Statistic: Biostatistics	BSTA2M	5		٩		
Master [120] in Biomedical Engineering	GBIO2M	5		٩		