

lphys2141 2020

Introduction to quantum optics

En raison de la crise du COVID-19, les informations ci-dessous sont susceptibles d'être modifiées, notamment celles qui concernent le mode d'enseignement (en présentiel, en distanciel ou sous un format comodal ou hybride).

5 crédits	22.5 h + 7.5 h	Q1

Enseignants	Piraux Bernard ;Urbain Xavier ;					
Langue d'enseignement	Anglais					
Lieu du cours	Louvain-la-Neuve					
Thèmes abordés	Interactions lumière-matière, atomes froids, transfert cohérent de population, condensat de Bose-Einstein, RMN et IRM, équations de Bloch.					
Acquis d'apprentissage	 a. Contribution de l'unité d'enseignement aux acquis d'apprentissage du programme (PHYS2M et PHYS2M1) AA 1.1, AA 1.2, AA 1.5, AA1.6, AA 3.1, AA 3.3, AA 5.4 b. Acquis d'apprentissage spécifiques à l'unité d'enseignement Au terme de cette unité d'enseignement, l'étudiant.e sera capable de : 1. décrire l'interaction laser-atome avec l'hamiltonien approprié et le formalisme de la matrice de densité ; 2. décrire les étapes essentielles pour le piégeage d'atomes, au refroidissement d'atomes et à la formation de condensats ; 3. déterminer les paramètres expérimentaux pour un refroidissement Doppler et sub-Doppler ; 4. décrire les étapes essentielles à l'imagerie par résonance magnétique nucléaire ; 5. restituer une définition quantique d'une collision et pouvoir utiliser le concept de section efficace. La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d'enseignement (UE) ». 					
Modes d'évaluation des acquis des étudiants	En raison de la crise du COVID-19, les informations de cette rubrique sont particulièrement susceptibles d'être modifiées. Examen écrit avec des questions ouvertes et fermées.					
Méthodes d'enseignement	En raison de la crise du COVID-19, les informations de cette rubrique sont particulièrement susceptibles d'être modifiées. Cours ex-cathedra, animations vidéos, applications numériques, exercices, démonstrations en laboratoire.					
Contenu	Interactions lumière-atome, modèle à deux niveaux, oscillation de Rabi, passage adiabatique rapide, les vecteurs de Bloch, les franges de Ramsey, l'absorption saturée, le modèle à trois niveaux, pompage optique, spectroscopie à deux photons, STIRAP, transparence induite par la lumière, lumière lente. Atomes froids, pièges d'atomes et condensats, refroidissement Doppler et sub-Doppler, piège dipolaire et magnéto-optique, refroidissement évaporatif, mécanique statistique de condensats bosoniques, propriétés des condensats, lasers atomiques. Applications des atomes froids à la métrologie et aux horloges atomiques, fontaines atomiques, ions froids en régime Lamb-Dicke, sauts quantiques, qubits atomiques. Matrice de densité et équation de Von Neumann-Liouville. Introduction aux principes de la résonnance magnétique nucléaire (NMR) et d'imagerie par résonnance nucléaire (IRM) : équations de Bloch, échos de spin, RMN à transformée de Fourier, séquences de pulses en IRM. Introduction à la théorie des collisions.					
Bibliographie	M. Fox « Quantum Optics. An introduction », Oxford Master Series in Atomic, Optical, and Laser Physics, 2006. M. Fox « Optique quantique. Une introduction », trad. B. Piraux, De Boeck Université, 2011. P.Lambropoulos and D.Petrosyan « Fundamentals of Quantum Optics and Quantum Information », Springer, 2007. C. Cohen –Tannoudji, Bernard Diu, Franck Laloë, "Mécanique quantique, tome III", CNRS Editions, EDP Sciences – Collection: Savoirs Actuels, 2017. S. Haroche and JM. Raimond « Exploring the Quantum », Oxford, 2007. M.O. Scully & M.S. Zubairy « Quantum Optics », Cambridge University Press, 1997.					

Université catholique de Louvain - Introduction to quantum optics - cours-2020-lphys2141

Faculté ou entité en	PHYS
charge:	

Force majeure				
Modes d'évaluation des acquis des étudiants	La crise sanitaire implique des incertitudes quant aux modalités d'évaluation en particulier pour la session de janvier. Deux options sont envisagées selon la sévérité des contraintes liées à la crise sanitaire. Un plan A en présentiel : • Examen écrit Un plan B en distanciel : • Examen oral sur Teams			

Programmes / formations proposant cette unité d'enseignement (UE)							
Intitulé du programme	Sigle	Crédits	Prérequis	Acquis d'apprentissage			
Master [120] : ingénieur civil physicien	FYAP2M	5		•			
Master [60] en sciences physiques	PHYS2M1	5		•			
Master [120] en sciences physiques	PHYS2M	5		•			