Optimization models and methods II

linma2471  2020-2021  Louvain-la-Neuve

Optimization models and methods II
En raison de la crise du COVID-19, les informations ci-dessous sont susceptibles d’être modifiées, notamment celles qui concernent le mode d’enseignement (en présentiel, en distanciel ou sous un format comodal ou hybride).
5 crédits
30.0 h + 22.5 h
Q1
Enseignants
Glineur François;
Langue
d'enseignement
Anglais
Préalables
Ce cours suppose le suivi au préalable d'un cours de base en optimisation (tel que  le cours LINMA1702) ainsi que certaines notions élémentaires d'analyse réelle et d'algèbre linéaire (correspondant aux cours LFSAB1101 et LFSAB1102).
Thèmes abordés
Optimisation linéaire, optimisation convexe (y compris l'optimisation structurée conique) ; dualité et applications ; méthodes de point intérieur ; méthodes du premier ordre, méthodes de région de confiance ; pratique d'un langage de modélisation.
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1 Eu égard au référentiel AA, ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants :
AA1.1, AA1.2, AA1.3
AA2.1, AA2.2, AA2.4, AA2.5
AA5.3, AA5.5
Plus précisément, au terme du cours, l'étudiant sera capable de :
  • Reconnaître un problème pouvant être formulé ou converti sous forme linéaire, convexe, ou conique
  • Exploiter le concept de dualité pour la compréhension d'un problème, la production de certificats d'optimalité ou d'impossibilité, pour l'analyse de sensibilité ou la formulation de problèmes robustes
  • Décrire, analyser et Implémenter des algorithmes de résolution avancés dans les domaines de l'optimisation linéaire, convexe ou non-linéaire
  • Utiliser un langage de modélisation pour formuler et résoudre un problème d'optimisation, en exploitant la séparation entre modèle, données et algorithme de résolution
Acquis d'apprentissage transversaux :
  • utiliser un logiciel de calcul numérique de type Matlab ou de modélisation de type AMPL
  • effectuer en petit groupe un travail de formulation, d'analyse et/ou de résolution de modèles d'optimisation
  • rendre compte par écrit d'un travail de formulation, d'analyse et/ou de résolution de modèles d'optimisation.
 
Contenu
Modèles : Techniques avancées de modélisation linéaire et convexe ; optimisation conique structurée ; dualité convexe et applications (alternatives, analyse de sensibilité, optimisation robuste) ; dualité Lagrangienne
Méthodes : Méthodes de point intérieur à suivi de chemin pour l'optimisation convexe (barrières auto-concordantes) ; méthodes du premier ordre pour l'optimisation convexe et non-convexe (y compris méthodes stochastiques) ; complexité algorithmique et vitesse de convergence ; méthode de région de confiance ; découverte et utilisation du langage de modélisation AMPL.
Applications traitées dans des domaines variés tels que l'analyse de données, le machine learning, la finance, l'optimisation de formes ou de structures mécaniques, ou les télécommuncations.
Méthodes d'enseignement

En raison de la crise du COVID-19, les informations de cette rubrique sont particulièrement susceptibles d’être modifiées.

Le cours est organisé autour de séances de cours, de séances d'exercices supervisées et de laboratoires informatiques, ainsi que d'une série de devoirs à réaliser par petits groupes. 
Modes d'évaluation
des acquis des étudiants

En raison de la crise du COVID-19, les informations de cette rubrique sont particulièrement susceptibles d’être modifiées.

Les étudiants sont évalués individuellement lors d'un examen écrit sur base des objectifs énoncés plus haut. En outre les étudiants réalisent une série de devoirs par petits groupes, comptabilisés dans la note finale. 
Ressources
en ligne
Les documents du cours (notes, transparents, énoncés des exercices et des devoirs) sont disponibles sur Moodle : https://moodleucl.uclouvain.be/course/view.php?id=8194
Bibliographie
  • Convex Optimization, Stephen Boyd et Lieven Vandenberghe, Cambridge University Press, 2004.
  • Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, Aharon Ben-Tal, Arkadi Nemirovski, SIAM 2001.
  • Interior point methods for linear optimization, Cornelis Roos, Tamas Terlaky, Jean-Philippe Vial, Springer, 2006.
  • Introductory Lectures on Convex Optimization: A Basic Course, Yurii Nesterov, Kluwer, 2004.
  • Trust-region methods, A. Andrew R. Conn, Nicholas I. M. Gould, Ph. Philippe L. Toint, SIAM, 2000.
  • Lectures on Convex Optimization, Y. Nesterov, Springer, 2018
Faculté ou entité
en charge
MAP
Force majeure
Modes d'évaluation
des acquis des étudiants
A moins que les règles sanitaires imposent une épreuve à distance, l'examen écrit est organisé sur site. Les étudiants et étudiantes se trouvant dans l'impossibilité de participer à cet examen, attestée par un certificat médical de quarantaine, se verront proposer la possibilité de passer l'examen à distance au même moment. Cet examen parallèle, écrit et surveillé, sera du même type et portera sur la même matière que l’examen principal.


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] en sciences mathématiques

Master [120] : ingénieur civil en informatique

Master [120] en sciences informatiques

Master [120] : ingénieur civil en mathématiques appliquées

Master [120] : ingénieur civil en science des données

Master [120] en science des données, orientation technologies de l'information

Master [120] : ingénieur civil biomédical