Nonparametric curve estimation : Fourier-based methods

lstat2430  2019-2020  Louvain-la-Neuve

Nonparametric curve estimation : Fourier-based methods
Note from June 29, 2020
Although we do not yet know how long the social distancing related to the Covid-19 pandemic will last, and regardless of the changes that had to be made in the evaluation of the June 2020 session in relation to what is provided for in this learning unit description, new learnig unit evaluation methods may still be adopted by the teachers; details of these methods have been - or will be - communicated to the students by the teachers, as soon as possible.
5 credits
30.0 h
Q2

  This biannual learning unit is not being organized in 2019-2020 !

Teacher(s)
von Sachs Rainer;
Language
English
Main themes
The objective of this lecture is to develop applications of non-parametric curve estimation methods to two modern fields of statistics: for the one, to the estimation of spectral densities of time series, including multivariate time series, for the other the interpretation of projection-based estimators as (linear and non-linear) smoothers in a general regression or density estimation context.
Aims

At the end of this learning unit, the student is able to :

1 Students will be able to understand and appreciate finite sample and asymptotic properties of modern curve estimation methods, along the problem of estimating spectral densities of time series (an alternative and compact way to describe the correlation structure in a given time series in an enhanced and interpretable way).
For projection based estimators (e.g. wavelet estimators), the emphasis will be on understanding the link to classical kernel estimation and why non-linear (threshold) based projection estimators can oer interesting
advantages, both in theory and practice. Beyond developing the theoretical background, the numerical performance of the studied methods will be analysed by the students along a practical project (in R or matlab). Hence, having followed this course, the students will have seen all facets of the methodology on nonparametric curve estimation in two more advanced set-ups for which a deeper understanding of the
concepts behind should enable them to correctly apply the shown methods and interpret their results in a concrete data situation.
 

The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
Content
1. Spectral density estimation: Definition, periodogram-based kernel estimators(properties, asymptotics, higher order kernels, multivariate spectral densities, bandwidth selection, time-varying spectral densities), interpretations.
2. Projection-based estimators: General definition, specific wavelet approach (properties and asymptotics, mainly via simple Haar basis estimators), comparison of linear and non-linear methods (link to kernel estimation, overview on dierent thresholding methods), examples.
Bibliography
  • Brockwell, P. and Davis, R. (2009). Time Series: Theory and Methods. Springer Series in Statistics.
  • Shumway, R. and Stoer, D. (2011). Time Series and its Applications. Springer.
  • Brillinger, D. (1981). Time Series; Data Analysis and Theory. Holden Day.
  • Vidakovic, B. (1999). Statistical Modellng by Wavelets. Wiley.
  • Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A.B. (1998). Wavelets, Approximation and Statistical Applications. Springer Lecture Notes in Statistics.
  • Nason, G.P. (2008). Wavelet Methods in Statistics with R. Springer.
Faculty or entity
LSBA


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Certificat d'université : Statistique et sciences des données (15/30 crédits)

Master [120] in Statistic: General