UCLouvainIphys2266Physics of the upper atmosphere and
space2019Space

In view of the health context linked to the spread of the coronavirus, the methods of organisation and evaluation of the learning units could be adapted in different situations; these possible new methods have been - or will be - communicated by the teachers to the students.

5 credits	22.5 h + 7.5 h	Q2

Teacher(s)	Pierrard Viviane ;
Language :	English
Place of the course	Louvain-la-Neuve
Main themes	Physics of gases and plasmas. The Sun andother stars. The interplanetary spaceand solar wind. The magnetosphere. Movement of particles in a magnetic field. Interactions Sun-magnetosphere. Ionosphere and plasmasphere. Neutral atmosphere. Planetary atmospheres.
Aims	 a. Contribution of the teaching unit to the learning outcomes of the programme (PHYS2M and PHYS2M1) AA1: A1.1, A1.2, A1.5 AA2: A2.3, A2.4, A2.5 b. Specific learning outcomes of the teaching unit At the end of this teaching unit, the student will be able to : describe space plasmas and the interactions between the solar wind and the magnetic field of the planets; know the atmospheric layers and the physical mechanisms that are implicated; use the appropriate kinetic et magnetohydrodynamic equations; evaluate the order of magnitude of the variables used to describe space plasmas; conduct a personal work on a chosen topic concerning space physics; develop a simple computer code to visualize the results; analyze data and results of models and discuss them; present results orally and in writing.
Evaluation methods	Due to the COVID-19 crisis, the information in this section is particularly likely to change. Written exam on the content explained during the course for 3/4 of the final note (15/20), completed by a report and its presentation counting for 1/4 of the final note (5/20). The work for this report is chosen in a given list of topics, for which a short individual written report has to be sent by e-mail at least 1 day before the last course, and an individual oral presentation of its content is made by the student during the last course(s). If the report is not sent in time, it can still be sent for the session of September and presented orally during the day of the exam.
Teaching methods	Due to the COVID-19 crisis, the information in this section is particularly likely to change. Lectures. Integrative project. Personal work.
Content	The Sun, our star : stars (formation, Hertzsprung-Russell diagram, fusion, abundance of the elements) – description of the inner Sun (radiative zone, convective zone) – the solar atmosphere (photosphere, chromosphere, corona) – sunspots, solar activity cycle – solar eruptions (CME, flares, prominences) – coronal holes.

ι	Iniversité catholique de Louvain - Physics of the upper atmosphere and space - en-cours-2019-lphys2266				
	Physics of gases and plasmas : definitions and properties – kinetic theory: microscopic approach – veloci distribution functions – fundamental equations : Liouville, Boltzmann, Vlasov, Fokker-Planck – Debye length hydrodynamic theory : macroscopic approach – fundamental equations : continuity, momentum, energy – syste closure: Euler approximation, Navier-Stokes – links and differences.				
	Application to planetary and stellar atmospheres : hydrostatic equilibrium – neutral atmosphere – ionized atmosphere – hydrodynamic models – Parker's model of the solar wind – mean free path – exosphere – liberation velocity – satellites – escape flux (Jeans) – solar wind – hydrogen and helium escaping from Earth.				
	The interplanetary space : discovery of the solar wind – solar magnetic field – observations: slow-speed and high-speed solar winds – application of the fundamental equations for plasmas : hydrodynamic and kinetic models – heliosphere – comets.				
	The magnetosphere : origin of the geomagnetic field – inversion of polarities – dipole – International Geomagnetic Reference Field – planetary magnetospheres – description of the different regions of plasmas – currents – magnetopause – polar cusps – plasma sheets –auroras – Van Allen belts.				
	Movement of particles trapped in a magnetic field : decomposition in 3 superimposed movements – gyromotior – oscillation - azimuthal drift – drift forces (gravity, electric and magnetic forces, polarization) – adiabatic invariants – application to the Van Allen belts and to the plasmasphere.				
	Sun-magnetosphere interactions : magnetic storms – substorms – space weather – indexes of geomagnetic activity (Kp, Dst, Ae, PC,) – reconnexion.				
	Ionosphere and plasmasphere : sources of ionization – ionospheric layers – propagation of radio waves – perturbations due to solar activity – influence on satellites and GPS – plasmasphere – formation of the plasmapause – co-rotation electric field – convection electric field – polar wind.				
	Neutral atmosphere : temperature profile – troposphere – stratosphere – mesosphere – thermosphere – photodissociation – chemical reactions – ozone.				
	Planetary atmospheres : Mercury – Venus – Mars – Jupiter – Saturn – Uranus – exoplanets.				
Inline resources	Powerpoint available on Moodle				
Bibliography	Pierrard V., 2009, <i>L'environnement spatial de la Terre</i> , Presses Universitaires de Louvain, (ISBN 978-2-87463-195-5 214 pages. (conseillé)				
Faculty or entity in charge	PHYS				

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Aims		
Master [60] in Physics	PHYS2M1	5		٩		
Master [120] in Geography : Climatology	CLIM2M	5		٩		
Master [120] in Physics	PHYS2M	5		٩		