UCLouvain

Imeca2520

2019

Calculation of planar structures

In view of the health context linked to the spread of the coronavirus, the methods of organisation and evaluation of the learning units could be adapted in different situations; these possible new methods have been - or will be - communicated by the teachers to the students.

30.0 II + 30.0 II	5 credits	30.0 h + 30.0 h	Q2
-------------------	-----------	-----------------	----

(!)

This learning unit is not being organized during this academic year.

Teacher(s)	Doghri Issam ;					
Language :	English					
Place of the course	Louvain-la-Neuve					
Main themes	 The objective of the course is to show analytically -in simple cases- and numerically how to model and solve an important class of so-called planar structures, i.e. such that their mechanical problem is reduced to two space dimensions. The problems involve " long " solids under plane strain, " thin " solids under plane stress and thin or thick plates under bending loads. For each class of problems, appropriate formulations will be developed, together with their finite element discretization, in view of their numerical resolution using a specialized software. Some rather simple problems will also be solved analytically in order to better understand the theory. 					
Aims	In consideration of the reference table AA of the program "Masters degree in Mechanical Engineering", this course contributes to the development, to the acquisition and to the evaluation of the following experiences of learning: • AA1.1, AA1.2, AA1.3 • AA2.1, AA2.2, AA2.3 • AA3.1, AA3.2 1 • AA5.1, AA5.2, AA5.3 • AA6.1, AA6.2 Analytical and numerical modeling of two-dimensional problems in linear elasticity: • plane strain; • plane stress; • bending of plates. The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".					
Teaching methods	Due to the COVID-19 crisis, the information in this section is particularly likely to change. Travaux pratiques: • Resolution of several relatively simple problems dealing usually with direct applications of the theory (e.g., tube under inner and outer pressures, stress concentration in a plate with a small circular hole, force on the straight edge of a semi-infinite plate, bending of a circular plate under axisymmetric loading, etc.) • Use of a finite element numerical software, in order to understand the main steps of the method (geometry definition, input of material data and other problem parameters, space and time discretization, solver algorithms, post-processing and visualization of computation results).					
Content	Chapitre 1 : Plane strain and plane stress in Cartesian coordinates. Chapitre 2 : Plane strain and plane stress in cylindrical coordinates. Chapitre 3 : Kirchhoff-Love plate theory in Cartesian coordinates. Chapitre 4 : Kirchhoff-Love plate theory in cylindrical coordinates. Chapitre 5 : Reissner-Mindlin plate theory. Chapitre 6 : Finite element formulations of plate theories.					
Inline resources	http://icampus.uclouvain.be/claroline/course/index.php?cid=LMECA2520					

Université catholique de Louvain - Calculation of planar structures - en-cours-2019-lmeca2520

Faculty or entity in	MECA
charge	

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Aims			
Master [120] in Mechanical Engineering	MECA2M	5		٩			
Master [120] in Architecture and Engineering	ARCH2M	5		٩			
Master [120] in Civil Engineering	GCE2M	5		٩			
Master [120] in Electro- mechanical Engineering	ELME2M	5		٩			
Master [120] in Chemical and Materials Engineering	KIMA2M	5		٩			