UCLouvain

linma1510

2019

Linear Control

In view of the health context linked to the spread of the coronavirus, the methods of organisation and evaluation of the learning units could be adapted in different situations; these possible new methods have been - or will be - communicated by the teachers to the students.

5 credits	30.0 h + 30.0 h	Q2

Teacher(s)	Dochain Denis ;					
Language :	French					
Place of the course	Louvain-la-Neuve					
Main themes	Derivation of mathematical models of linear dynamical systems (state equations and transfer functions). Design of regulators and closed-loop control systems in order to satisfy specifications of stability, robustness, steady-state accuracy and transient performance. PI and PID regulation. Computer aided design.					
Aims	With respect to the referentiel AA, this courses contributes to the development, the acquisition and the evaluation of the following learning outcomes:					
	• AA1.1, AA1.2, AA1.3					
	• AA5.3, AA5.4, AA5.5					
	At the end of the course, the student will be able :					
	 1. to design control systems on the basis of linear models; 2. to design control systems in closed loop aimed at meeting stability, robustness, steady-sate accuracy and transient behaviour performance requirements; 3. to use computer-aided control design methods; 					
	 4. to implement closed-loop control systems in laboratory conditions, in conditions close to those encountered in industrial practice; 5. to use industrial PID regulators; 					
	6. to use discrete time controllers implemented on PLC's;7. to perform experiments in an autonimous way, from the planning of the work until the practical implementation and the performance evaluation.					
	The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".					
Evaluation methods	Due to the COVID-19 crisis, the information in this section is particularly likely to change. Laboratory evaluation outside of the exam period and written exam.					
Teaching methods	Due to the COVID-19 crisis, the information in this section is particularly likely to change. Problem-based learning, laboratory experiments.					
Content	Mathematical models General principles of closed-loop control Stability					
	4. Steady-state accuracy 5. Disturbance attenuation					
	6. Transient performance					
	7. Robustness 8. Regulation structures					
	9. Case studies: electrical machines, automotive systems, aeronautics, thermic and nuclear power plants, heat exchangers, industrial grinding and mixing processes, etc.					
Inline resources	https://moodleucl.uclouvain.be/course/view.php?id=7834					
Bibliography	Transparents, notices de laboratoire. Livre de référence : K. Astrom & R. Murray, Feedback Systems: An Introduction for Scientists and Engineers http://www.cds.caltech.edu/~murray/amwiki/index.php					
Faculty or entity in	MAP					
charge						

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Aims		
Minor in Engineering Sciences: Mechanics (only available for reenrolment)	LMECA100I	5		Q		
Minor in Engineering Sciences: Applied Mathematics (only available for reenrolment)	LMAP100I	5		0		
Specialization track in Applied Mathematics	LMAP100P	5		•		
Master [120] in Mechanical Engineering	MECA2M	5		•		
Minor in Applied Mathematics	LFSA136I	5		Q.		
Master [120] in Electrical Engineering	ELEC2M	5		•		
Master [120] in Chemical and Materials Engineering	KIMA2M	5		•		