Earth observation by satellite

lgeo1343  2019-2020  Louvain-la-Neuve

Earth observation by satellite
Note from June 29, 2020
Although we do not yet know how long the social distancing related to the Covid-19 pandemic will last, and regardless of the changes that had to be made in the evaluation of the June 2020 session in relation to what is provided for in this learning unit description, new learnig unit evaluation methods may still be adopted by the teachers; details of these methods have been - or will be - communicated to the students by the teachers, as soon as possible.
5 credits
30.0 h + 30.0 h
Q1
Teacher(s)
Lambin Eric;
Language
French
Prerequisites

The prerequisite(s) for this Teaching Unit (Unité d’enseignement – UE) for the programmes/courses that offer this Teaching Unit are specified at the end of this sheet.
Main themes
Prerequisites : Notions of statistics, general physics course. The course has three components: 1: The presentation during lectures of the theoretical and methodological bases of remote sensing; 2: The application of image processing and interpretation methods to Landsat data on a region of Belgium, using image processing software on PC; 3: The exploration of a large range of remote sensing applications and of the methods used in each application, on the basis of CD-ROMs demonstrating case studies. Physical bases of remote sensing: - Definitions: radiant energy, radiant flux, radiant flux density, radiance; - Interactions between energy and the surface of the earth: laws of Stefan-Boltzmann and Wien. - Spectral reflectance curves ; - Atmospheric effects; - Physical interactions with thermal infra-red energy. The sensors used in remote sensing: - Landsat MSS and TM, SPOT; - AVHRR, Vegetation, MODIS; - the new high spatial resolution sensors. Image processing: - Corrections for non-systematic and systematic geometric distortions - Radiometric corrections - Extraction of statistics from images - Contrast enhancement - Spatial filtering - Supervised classification - Unsupervised classification - Classification errors estimation - Change detection methods - Multispectral transformations: Tasseled cap transformation; principal components analysis; - Notions of microwave remote sensing. Practical work: Processing of a Landsat TM image of Belgium: 1st session Introduction to image processing software 2nd session Color composites and contrast enhancement 3rd session Design of a scientific project 4th and 5th sessions Geometric correction 6th session Unsupervised classification 7th session Supervised classification 8th session Accuracy assessment of classification
Aims

At the end of this learning unit, the student is able to :

1 Knowledge : The students will acquire a good knowledge of the different applications of remote sensing, and a capacity to decide which sensors and which image processing and interpretation methods are most appropriate for a given application. Skills : The students will gain understanding of the bases of remote sensing and will be able to process and interpret satellite data on a given region, using a image processing software on PC. Emphasis is put on optical remote sensing for terrestrial ecosystem applications.
 

The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
Evaluation methods
Continuous evaluation based on:
  • Two tests during the trimester: (i) physical basis of teledetection and (ii) image processing technique (10% of final result for each test, so 20% for both);
  • two practical work reports for each processing step (30% of final result for the overall of reports);
  • a work on teledetection applications: answer to several questions, based on CD-ROMs (20% of final result).
Final evaluation: based on written examination (30% of final result).
Bibliography
  • Wilmet J. 1996. Télédétection aérospatiale: méthodes et applications. SIDES, Fontenay-sous-Bois, ISBN 2 86861 097 8.
  • Richards J. 1986. remote Sensing Digital Image Analysis, Springer-Verlag, 2ème édition
Teaching materials
  • matériel sur moodle
Faculty or entity
GEOG


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Minor in Geography

Master [120] in History of Art and Archaeology : General

Bachelor in Geography : General

Master [120] in Population and Development Studies

Master [120] in Biology of Organisms and Ecology

Interdisciplinary Advanced Master in Science and Management of the Environment and Sustainable Development

Master [120] in Environmental Science and Management

Master [120] in Physics