Mechanics of structures

lgciv1022  2019-2020  Louvain-la-Neuve

Mechanics of structures
Note from June 29, 2020
Although we do not yet know how long the social distancing related to the Covid-19 pandemic will last, and regardless of the changes that had to be made in the evaluation of the June 2020 session in relation to what is provided for in this learning unit description, new learnig unit evaluation methods may still be adopted by the teachers; details of these methods have been - or will be - communicated to the students by the teachers, as soon as possible.
5 credits
30.0 h + 30.0 h
Q2
Teacher(s)
Latteur Pierre;
Language
French
Prerequisites
Advanced notions of Mathematics, Mechanics and Physics. In particular, course LFSAB1202 (Physics 2).

The prerequisite(s) for this Teaching Unit (Unité d’enseignement – UE) for the programmes/courses that offer this Teaching Unit are specified at the end of this sheet.
Main themes
See Chapter « Content » hereunder
Aims

At the end of this learning unit, the student is able to :

1 At the end of the course, the student will be able to
  • Understand and apply the principles of the distribution of forces, constraints and deformations within the structures;
  • Design and calculate isostatic structures composed of compressed or tensioned bars, bent beams, cables, funicular arcs, elements subjected to combined forces;
  • Choose the types of structural elements and building materials by measuring the consequences of his choices on the behavior of structures.
The course helps to develop the program's AA: A1.1, AA1.2, AA1.3
 

The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
Content
Chap. 1: the laws of the MDS confirmed by the natural structures
Chap. 2: empiricism construction for millennia
Chap. 3: brief history of the resistance of materials
Chap. 4: building with the knowledge of the laws of nature
Chap. 5: designing the structures
Chap. 6: the categories of structures
Chap. 7: the general approach of calculating a structure
Chap. 8: mechanical properties of building materials
Chap. 9: actions on structures, load cases, load combinations
Chap. 10: strength and moment
Chap. 11: equilibrium, 1st order, 2nd order, second order, ...
Chap. 12: supports, hinges, isostaticity and hyperstaticity
Chap. 13: basic geometrical characteristics of sections: area, inertia, static moment
Chap. 14: notion of security, securty coefficients
Chap. 15: design of the elements subjected to normal force, thermal actions
Chap. 16: trusses
Projection of a film on the construction of the Millau Bridge
Chap. 17: Funicular arches
Chap. 18: Cables
Chap. 19: internal forces into the beams
Chap. 20: stresses in the beams and design criteria
Chap. 21: deformation of the beams
Chap. 22: biaxial flexion, composed flexion, notions of prestress
Chap. 23: stresses due to shear
Chap. 24: stresses due to torsion
Chap. 25: continuous media and circle of Mohr
Chap. 26: rupture criteria, intrinsic curves
Chap. 27: buckling
Chap. 28: energy, virtual works theorem, unity force theorem
Chap. 29: introduction to hyperstaticity
Teaching methods
Lectures with the help of slides for the volume 1. Tutorials with the teaching assistants for the volume 2
Evaluation methods


Exam of about an hour, about the theoretical concepts of the course (PART I) + exam of about 3 hours with practical problems to solve (PART II). The theoretical exam may include a demonstration. For the PART II exam, students can only have a personal handwritten summary on a single, double-sided A4 sheet.
The success of both parties is required. If one of the two parties is in failure, the resulting score will be the minimum between the average score and 9/20.
An eliminatory question on very basic aspects of the course is provided at the beginning of the exam. The final score will be 0/20 if this eliminatory question is not successful
Other information
A didactic software for calculating structures (see www.issd.be) is used during the course and TPs and is made available to students in computer room. Its use is highly recommended
Online resources
Available on Moodle
Bibliography
  • Transparents du cours ;
  • Vivement conseillé : « Introduction à l'analyse des structures », F. Frey et M-A. Studer, Presses polytechniques et universitaires romandes ;
  • Suggéré : « Analyse des structures et milieux continus), Volume 2 : Mécanique des structures, F. Frey, Presses polytechniques et universitaires romandes ;
  • Suggéré (parties concernant les arcs et les câbles) : « calculer une structure, de la théorie à l'exemple », P. Latteur, Editions L'Harmattan/Academia.
Faculty or entity
GC


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Bachelor in Engineering : Architecture

Master [120] in Chemical and Materials Engineering

Minor in Engineering Sciences: Construction (only available for reenrolment)

Minor in Construction

Specialization track in Construction