Nuclear thermal-hydraulics (Centre d'étude nucléaire-Mol)

lbnen2001  2019-2020  Autre site

Nuclear thermal-hydraulics (Centre d'étude nucléaire-Mol)
Note from June 29, 2020
Although we do not yet know how long the social distancing related to the Covid-19 pandemic will last, and regardless of the changes that had to be made in the evaluation of the June 2020 session in relation to what is provided for in this learning unit description, new learnig unit evaluation methods may still be adopted by the teachers; details of these methods have been - or will be - communicated to the students by the teachers, as soon as possible.
5 credits
Q1
Language
English
Prerequisites
A relevant course about introduction to nuclear energy
Fundamental of fluid mechanics, heat transfer, thermodynamic

 

Aims

At the end of this learning unit, the student is able to :

1
  • To learn how to estimate the volumetric heat generation rate in fission reactor cores under normal operation and shutdown conditions 
  • To learn how to analyse the thermal performance of nuclear fuel elements
  • To learn the basic fluid mechanics of single phase reactor cooling systems 
  • To learn to calculate pressure drop in reactor systems, including tube bundles, and spacer grids
  • To learn to analyse the heat transfer characteristics of single phase reactor cooling systems
  • To learn the basic fluid mechanics of two-phase systems, including modelling approaches, flow regime maps, void-quality relations, and pressure drop evaluation
  • To learn the fundamentals of boiling heat transfer, and its implications for reactor design
  • To calculate and analyze the coolant conditions throughout a reactor loop including the determination of natural convection regime
  • To learn the fundamentals of core thermal design, e.g. flow rate/pressure drop relation under different conditions (friction dominated/gravity dominated) for the evaluation of cooling performances
In addition of supervised exercises, a mini-project is organized about modelling and computing pressure drop in a boiling channel (different conditions and assumptions may be treated over the years).
 

The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
Content
  • Thermal design principles/reactor heat generation
  • Reminders about single phase transport equations (prerequisite)
  • Two-phase flow models, transport equations
  • Thermodynamic (vessels/pressurizer) and power conversion cycle (steam)
  • Heat transfer analysis in a fuel element
  • Reminders about single phase fluid mechanics and heat transfer (prerequisite)
  • Two-phase fluid mechanics and pressure drops
  • Two-phase heat transfer (pool boiling, flow boiling)
  • ·Single heated channel (thermal and flow problems)
  • Flow loops (steady state natural convection)
Teaching methods
  • 2 t.m.: 40h teaching + seminar and 15h practical works in classroom
  • SCK.CEN guidance for demonstrations with codes
  • SCK.CEN + UCL TA for practical works
Evaluation methods
The final mark is composed of (i) a written exam(80%, closed book)including an exercise and a theoretical part, and (ii) the mini-project(20%).                                                   
Other information
Yann BARTOSIEWICZ yann.bartosiewicz@uclouvain.be
Professor at the Université Catholique de Louvain (UCL, Louvain-la-Neuve)
Master in Turbulence modeling and Transfer Phenomena, Ecole Nationale Polytechnique de Grenoble, France, 1998.
PhD in Mechanical engineering, Université de Sherbrooke, Canada, 2003: Modeling of supersonic plasma jets in non-Local Thermodynamics Equilibrium
Research fields: Fluid mechanics, heat transfer, compressible flows, two-phase flows, thermodynamics, computational fluid dynamics
Teaching duties in BNEN: Nuclear Thermal Hydraulics
Other research activities: scientific leader for UCL in European projects in nuclear thermal-hydraulics:
NURESIM: CFD Simulation of instabilities in a stratified two-phase flows relevant to PTS scenario NURISP: Simulation of two-phase chocked flows during LOCA: implementation of non-equilibrium models in CATHARE 3
THINS: Direct and Large Eddy Simulation (DNS/LES) of convective heat transfer for low Prandtl fluids (Liquid metals)
UCL Promotor of other projects in energy
Other duties: Member of the CFD group at OECD, Member of the European Nuclear Engineering Network (ENEN)
Faculty or entity
EPL


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Advanced Master in Nuclear Engineering