UCLouvain UCLouvain

Nuclear reactor theory (Centre d'étude nucléaire-Mol)

In view of the health context linked to the spread of the coronavirus, the methods of organisation and evaluation of the learning units could be adapted in different situations; these possible new methods have been - or will be - communicated by the teachers to the students.

6 credits Q2

Language :	English			
Place of the course	Autre site			
Aims	 To understand the physical processes involved in a nuclear reactor To understand and be able to write down and solve the basic equations To be able to simulate a reactor/source configuration (geometry, composition) as appropriate depending on: number of dimensions; steady state or transient; number of groups; delayed neutron precursors; space dependent properties. To learn how to measure neutron distributions and parameters relevant for nuclear reactors, in particular reactivity and reactivity coefficients 			
Evaluation methods	Due to the COVID-19 crisis, the information in this section is particularly likely to change. Written examination, open book.			
Content	 Physics of nuclear reactors Transport and diffusion Spatial dependence Slowing down theory Resonance integrals Cell calculations Neutron thermalisation Multigroup equations Criticality dependence on geometry and composition Reactivity and control Reactor dynamics Reactor codes Neutron sources and detectors Basic measurements: source strength, neutron flux (activation analysis, neutron counting), neutron spectrum reaction rates Activity, dose and cross-section measurement Measurement of neutron transport parameters: stationary methods, pulsed neutron experiments Measurement of reactivity (and reactivity coefficients): survey, static methods, dynamic measurements, inverse kinetics, neutron noise fluctuation methods 			
Other infos	This course is part of the Advanced Master programme in nuclear engineering organized by the Belgian Nuclear Higher Education Network (BNEN). BNEN is organised through a consortium of six Belgian universities and the Belgian Nuclear Research Centre, SCK-CEN and takes place at the SCK-CEN in Mol. Information : https://www.sckcen.be/fbnen			
Faculty or entity in charge	EPL			

Programmes containing this learning unit (UE)					
Program title	Acronym	Credits	Prerequisite	Aims	
Advanced Master in Nuclear Engineering	GNUC2MC	6		۹	