Data Analytics

mlsmm2116  2019-2020  Mons

Data Analytics
Note from June 29, 2020
Although we do not yet know how long the social distancing related to the Covid-19 pandemic will last, and regardless of the changes that had to be made in the evaluation of the June 2020 session in relation to what is provided for in this learning unit description, new learnig unit evaluation methods may still be adopted by the teachers; details of these methods have been - or will be - communicated to the students by the teachers, as soon as possible.
5 credits
30.0 h
Q1
Teacher(s)
Fouss François;
Language
English
Prerequisites
/
Main themes
Nowadays, data are everywhere. For most organizations, potentially every area of its business, as well as every relationship related to its business, can now be quantified and recorded. Such amount of data led to the emergence of powerful methods for storing, processing, querying, and extracting useful information/knowledge from these data. This course will be focused on methods for data understanding, design, management, preparation, modeling, querying, and visualization, as a global means for the organization of making better decisions. As a central element in data analytics, modeling and methodology will play an important role in this course, including, e.g., data design for business intelligence analytics, predictive modeling, or fitting statistical models to data.
Bibliography
Sources potentielles :
Provost &  Fawcett (2013) 'Data science for business'. O'Reilly.
Sherman (2014) 'Business intelligence guidebook: from data integration to analytics'. Morgan Kaufmann.
Efraim, Sharda & Delen (2010) 'Decision support and business intelligence Systems'. Pearson.
Leskovec, Rajaraman  & Ullman (2014) 'Mining of massive datasets, 2nd ed'. Cambridge University Press.
Kelleher, Mac Namee & D'Arcy (2015) 'Fundamentals of machine learning for predictive data analytics. MIT Press.
Hastie, Tibshirani & Friedman (2009), "The elements of statistical learning, 2nd ed". Springer-Verlag.
Izenman (2008), 'Modern multivariate statistical techniques: regression, classification, and manifold learning. Springer.
Bellanger & Tomassone (2014), "Exploration de données et méthodes statistiques : data analysis & data mining avec le Logiciel R". Ellipses.
Faculty or entity
CLSM


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Master [120] in Public Administration

Master [120] : Business Engineering