linfo1123  2019-2020  Louvain-la-Neuve

Note from June 29, 2020
Although we do not yet know how long the social distancing related to the Covid-19 pandemic will last, and regardless of the changes that had to be made in the evaluation of the June 2020 session in relation to what is provided for in this learning unit description, new learnig unit evaluation methods may still be adopted by the teachers; details of these methods have been - or will be - communicated to the students by the teachers, as soon as possible.
5 credits
30.0 h + 30.0 h
Q2

  This learning unit is not being organized during year 2019-2020.

Language
French
Prerequisites
This course assumes that the student acquired programming skills,
algorithmic and programming language targeted in course LEPL1402 and discrete mathematics as seen in courses LINFO1114 or LEPL1108

The prerequisite(s) for this Teaching Unit (Unité d’enseignement – UE) for the programmes/courses that offer this Teaching Unit are specified at the end of this sheet.
Main themes
  • Theory of computability: problems and algorithms, computable and non-computable functions, reduction, undecidable problem classes (Rice's theorem), fixed point theorem, Church-Turing thesis
  • Logic: logic of propositions and logic of predicates (syntax, semantics, proof, quantifiers, model checking, resolution)
  • Computability Models: Turing Machine
  • Theory of complexity: complexity classes, NP-completeness, Cook's theorem, NP-complete problem solving.
Aims

At the end of this learning unit, the student is able to :

1
Given the learning outcomes of the "Bachelor in Engineering" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:
  • AA1.1, AA1.2
  • AA2.4
Given the learning outcomes of the "Bachelor in Computer science" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:
  • S1.I3, S1.G1
  • S2.2
Students who have successfully completed this course will be able to
  • recognize, explain and identify the limitations of information processing by a computer;
  • explain and make good use of the main computability models by explaining their bases, differences and similarities;
  • convert current language assertions into logical expressions using the syntax and semantics of the logic of propositions or predicates
  • recognize, identify and apprehend non-calculable problems as well as intrinsically complex problems.
Students will have developed methodological and operational skills. In particular, they will have developed their capacity to
  • take a critical look at the performance and capacity of computer systems
 

The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
Faculty or entity
INFO


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Specialization track in Computer Science

Bachelor in Computer Science