Reasoning about a highly connected world: graph theory, game theory and networks

linfo1115  2019-2020  Louvain-la-Neuve

Reasoning about a highly connected world: graph theory, game theory and networks
Note from June 29, 2020
Although we do not yet know how long the social distancing related to the Covid-19 pandemic will last, and regardless of the changes that had to be made in the evaluation of the June 2020 session in relation to what is provided for in this learning unit description, new learnig unit evaluation methods may still be adopted by the teachers; details of these methods have been - or will be - communicated to the students by the teachers, as soon as possible.
5 credits
30.0 h + 30.0 h
Q2

  This learning unit is not being organized during year 2019-2020.

Language
English
Prerequisites
This course assumes the student already masters the discrete mathematical skills targeted by the course LINFO1114

The prerequisite(s) for this Teaching Unit (Unité d’enseignement – UE) for the programmes/courses that offer this Teaching Unit are specified at the end of this sheet.
Main themes
  • Graphs (basic concepts, paths and connectivity)
  • Applications of graphs, for example, to model social networks (links, homophilia, closing)
  • Discrete structures on the Internet: graphs and properties of graphs, giant components, strong and weak links, triadic closure, structural equilibrium, equilibrium theorem, web structure, PageRank, power laws, the long tail
  • Introduction to game theory
Aims

At the end of this learning unit, the student is able to :

1
Given the learning outcomes of the "Bachelor in Engineering" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:
  • S1.I1, S1.G1
  • S2.2
Students completing successfully this course will be able to
  • identify and precisely define the basic concepts of graphs and trees by providing contextualized examples that highlight them.
  • explain various methods of traversing graphs
  • model various real-world problems encountered in computer science using the appropriate forms of graphs and trees, for example social networks and the Web
  • explain the main concepts of game theory (the type of game, the type of strategy of the agents) with the help of appropriate examples
  • define and interpret concepts with precision 
  • avoid misinterpretations and detect reasoning errors
 

The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
Bibliography
David Easley and Jon Kleinberg, Networks, Crowds and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.
Faculty or entity
INFO


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Bachelor in Computer Science