Note from June 29, 2020
Although we do not yet know how long the social distancing related to the Covid-19 pandemic will last, and regardless of the changes that had to be made in the evaluation of the June 2020 session in relation to what is provided for in this learning unit description, new learnig unit evaluation methods may still be adopted by the teachers; details of these methods have been - or will be - communicated to the students by the teachers, as soon as possible.
Although we do not yet know how long the social distancing related to the Covid-19 pandemic will last, and regardless of the changes that had to be made in the evaluation of the June 2020 session in relation to what is provided for in this learning unit description, new learnig unit evaluation methods may still be adopted by the teachers; details of these methods have been - or will be - communicated to the students by the teachers, as soon as possible.
5 credits
30.0 h + 30.0 h
Q2
Teacher(s)
Demoustier Sophie; Jonas Alain; Nysten Bernard; SOMEBODY;
Language
French
Main themes
Three general topics are presented:
- An introduction to the understanding of matter structure and properties which leads to study the structure of atoms, the periodicity of atomic properties, intra- and inter-molecular bonds and how they control the structure of materials.
- An introduction to thermodynamics within the frame of physical and chemical equilibrium, in a rigorous way but without necessarily using the complete formalism of thermodynamics; the approach is based on the atomic structure of matter and ideas derived from statistical physics. This includes state variables, the first principle of thermodynamics (energy conservation, internal energy, enthalpy, heat and enthalpy of reaction), the second principle of thermodynamics (spontaneous and non-spontaneous processes, entropy), free energy (including its interest to describe equilibrated reactions and its link to equilibrium constants). The notion of ideal gas will also be briefly introduced.
- How these notions are of interest to understand one-component phase transformations and chemical equilibria in aqueous solutions, such as acid/base reactions and solubility equilibria.
Aims
At the end of this learning unit, the student is able to : | |
1 |
Contribution of the course to the program objectives:
Regarding the learning outcomes of the program of Bachelor in Engineering, this course contributes to the development and the acquisition of the following learning outcomes:
Specific learning outcomes of the course: At the end of the course, the student will be able
|
The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
Content
Generalities: measurement units, matter, compounds, molecules, atoms, chemical symbols and equation, energy.
Atoms: electrons, protons, neutrons ; periodic table of elements ; light as a wave and emission spectra ; Bohr model, orbitals, quantum numbers, atomic radius ; energy of ionization.
Chemical bonds: types, Lewis structure, electronegativity, bond energy.
First principle of thermodynamics: work, energy, first principle, enthalpy, heat of reaction, of formation, of phase change, Hess' law.
Second principle of thermodynamics: entropy, spontaneous and equilibrated reactions, heat transfer, Boltzmann law, reaction entropy, Gibbs' free energy, phase changes.
Reaction equilibrium and free energy: Equilibrium constant, equilibrium vapour pressure.
Acid and bases: equilibrium, pH (weak and strong acids, salts, buffers, bases). pH computation, titration.
Equilibrium in aqueous solutions
Atoms: electrons, protons, neutrons ; periodic table of elements ; light as a wave and emission spectra ; Bohr model, orbitals, quantum numbers, atomic radius ; energy of ionization.
Chemical bonds: types, Lewis structure, electronegativity, bond energy.
First principle of thermodynamics: work, energy, first principle, enthalpy, heat of reaction, of formation, of phase change, Hess' law.
Second principle of thermodynamics: entropy, spontaneous and equilibrated reactions, heat transfer, Boltzmann law, reaction entropy, Gibbs' free energy, phase changes.
Reaction equilibrium and free energy: Equilibrium constant, equilibrium vapour pressure.
Acid and bases: equilibrium, pH (weak and strong acids, salts, buffers, bases). pH computation, titration.
Equilibrium in aqueous solutions
Teaching methods
Lectures (CM); sometimes in flipped classes
Exercices (APE) in groups.
Exercices (APE) in groups.
Evaluation methods
Written examination during the session following the semester using multiple choice questionnaire and/or open questions.
For this examination, the students receive a Mendeleev table mentioning the atomic and mass numbers of the elements and a formular established by the teachers.
For this examination, the students receive a Mendeleev table mentioning the atomic and mass numbers of the elements and a formular established by the teachers.
Online resources
Bibliography
- « Principes de Chimie », Atkins, Jones, Laverman (de boeck)
Les slides présentées au cours, les énoncés et les solutions des exercices sont disponibles sur Moodle.
Pour le second thème (thermodynamique), un syllabus adapté au format des cours est disponible sur Moodle (il n'y a pas de copie des dias présentées au cours); des podcasts sont également disponibles pour certains cours.
Teaching materials
- « Principes de Chimie », Atkins, Jones, Laverman (de boeck)
Faculty or entity
BTCI