Stochastic modelling

linma2470  2019-2020  Louvain-la-Neuve

Stochastic modelling
Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
5 crédits
30.0 h + 22.5 h
Q2
Enseignants
Chevalier Philippe; Jungers Raphaël (supplée Chevalier Philippe);
Langue
d'enseignement
Anglais
Préalables
Un cours de probabilités, des compétences en modélisation mathématique
Thèmes abordés
Introduction aux modèles stochastiques en recherche opérationnelle. Etude des processus de renouvellement ordinaire, en particulier les chaînes de Markov en temps discret et continu et les processus de décision avec gains. Applications aux problèmes de stocks, files d'attente, processus de branchement, promenades aléatoires, etc...
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1 À l'issue de ce cours, l'étudiant sera en mesure de :
  • Connaître les propriétés des processus stochastique avec des états discrets, en particulier les processus de renouvellement, les processus markoviens et les processus de décision markoviens.
  • Comprendre l'impact des phénomènes aléatoires et de la variabilité sur le comportement d'un système en régime transitoire et stationnaire.
  • Analyser et calculer les propriétés de différents systèmes de files d'attente (stationnaires et non-stationnaires).
  • Utiliser différents types de processus stochastiques pour représenter un système comportant des phénomènes aléatoires.
  • Optimiser des systèmes non-déterministes à l'aide de processus de décision markoviens.
  • Modéliser différents systèmes sujets à de la congestion à l'aide de modèles de file d'attente.
  • Mieux appréhender des situations où il faut prendre des décisions avec de l'incertitude.
 

La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
  • Le processus de Poisson et ses propriétés
  • Chaînes de Markov avec un nombre fini d'états
  • Processus de renouvellement ordinaires et variables aléatoires qui y sont reliées. Le concept de temps d'arrêt
  • Chaines de Markov avec un nombre infini d'états
  • La notion de réversibilité
  • Processus de Markov
  • Processus de naissance et de mort
  • Théorie des files d'attente et des réseaux de files d'attente
  • Modèle fluide de files d'attentes
  • Applications diverses, en particulier aux modèles de stock, de remplacement, de fiabilité, de modélisation d'atelier.
Méthodes d'enseignement
Le cours est donné de manière ex-catedra. Il y a 11 séances d'exercices qui permettent aux étudiants d'appliquer la matière et de s'entrainer sur des exercices des examens des années antérieures. Un cours est consacré aux présentation par les étudiants de leurs projets de simulation et un cours est consacré à la présentation par d'une application des concepts du cours par une personne du monde professionnel.
Modes d'évaluation
des acquis des étudiants
Les étudiants seront évalués individuellement et par écrit sur base des objectifs particuliers annoncés précédemment.
L'examen écrit portera sur des exercices d'application de la matière. Lors des séances d'exercice de nombreuses questions d'examens d'années antérieures sont vues.
Les étudiants réaliseront aussi en groupe un modèle de simulation visant à analyser et comprendre le comportement d'un système stochastique avec congestion. Ce travail ne pourra pas être refait pour la session de septembre.
Bibliographie
Lecture recommandée : livre "Stochastic Processes: Theory for applications" de R. Gallagher, 2013, disponible en ligne : http://www.rle.mit.edu/rgallager/notes.htm
Faculté ou entité
en charge
MAP


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] : ingénieur civil en science des données

Master [120] en sciences mathématiques

Master [120] : ingénieur civil en informatique

Master [120] : ingénieur civil en mathématiques appliquées

Master [120] en sciences informatiques

Master [120] en science des données, orientation technologies de l'information