Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
5 crédits
30.0 h + 22.5 h
Q2
Enseignants
Nesterov Yurii;
Langue
d'enseignement
d'enseignement
Anglais
Préalables
Basic knowledge of nonlinear analysis and linear algebra.
The target audience is the students interested in scientific computing, machine learning and optimization in engineering.
The target audience is the students interested in scientific computing, machine learning and optimization in engineering.
Thèmes abordés
- General nonlinear optimization.
- Smooth and non-smooth convex optimization.
- Interior-point methods.
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
Learning outcomes:
|
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
- General problem of nonlinear optimization. Black-box concept. Iterative methods and analytical complexity. Gradient method and Newton method. Local complexity analysis.
- Convex optimization: convex sets and functions; minimization of differentiable and non-differentiable convex functions; lower complexity bounds; optimal methods.
- Interior-point methods: notion of self-concordant functions and barriers; path-following methods; structural optimization.
Méthodes d'enseignement
The course is given in 12-15 lectures. The computer projects are implemented by the students themselves with supporting consultations.
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
In the written exam (in English or French) there are four questions, one for each chapter of the course (up to 5 points for each question). The marks for the exam and the exercises are combined in the final mark.
Ressources
en ligne
en ligne
The full syllabus (in English) can be downloaded from the web page of the course.
Bibliographie
- Yu.Nesterov. "Introductory lectures on convex optimization. Basic course", Kluwer 2004
- P. Polyak, « Introduction in optimization », J. Willey & Sons, 1989
- Yu. Nesterov, A. Nemirovsky, « Interior-point polynomial algorithms in nonlinear optimization », SIAM, Philadelphia, 1994.
Faculté ou entité
en charge
en charge
MAP