Stochastic processes : Estimation and prediction

linma1731  2019-2020  Louvain-la-Neuve

Stochastic processes : Estimation and prediction
Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
5 crédits
30.0 h + 30.0 h
Q2
Enseignants
Absil Pierre-Antoine; Vandendorpe Luc (coordinateur);
Langue
d'enseignement
Anglais
Préalables
Ce cours suppose acquises des notions en signaux et systèmes ainsi qu'en probabilités telles qu'enseignées dans les cours LEPL1106 et LEPL1108.
Thèmes abordés
L'objectif de ce cours est d'amener à une bonne compréhension des processus stochastiques, de leur modèles les plus couramment utilisés et de leurs propriétés, de même que la dérivation de certains des estimateurs les plus couramment utilisés pour ces processus : les filtres, les prédicteurs et les lisseurs de Wiener et de Kalman.
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1
1.1; 1.2; 1.3
3.1; 3.2; 3.3
4.2
A l'issue de cet enseignement, les étudiants seront en mesure :
  • D'utiliser les grandeurs qui caractérisent des variables aléatoires et les processus stochastiques ;
  • De caractériser et utiliser les processus stationnaires et leur description spectrale ;
  • D'utiliser les principaux estimateurs, et de caractériser leurs performances ;
  • De synthétiser des prédicteurs, filtres ou lisseurs de Wiener ou de Kalman.
 

La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
  • Partie 1 - Estimation: théorie des probabilités (rappel), estimation de Fisher et de Bayes, biais, covariance, erreur quadratique moyenne, borne de Cramér-Rao, propriétés asymptotiques, estimateurs classiques (maximum de vraisemblance, meilleur estimateur linéaire non biaisé, maximum a posteriori, moyenne conditionnelle...), modèles de Markov cachés, filtrage non linéaire, filtres particulaires, filtre de Kalman.
  • Partie 2 - Processus stochastiques et filtres LTI: variables aléatoires complexes, processus stochastiques, stationarité, ergodisme, autocovariance, densité spectrale de puissance, transformation par systèmes LTI, bruit blanc, factorisation spectrale, modèles de dimension finie (AR, MA, ARMA...), filtre de Wiener.
Méthodes d'enseignement
L'apprentissage sera basé sur des cours entrecoupés de séances de travaux pratiques (exercices en salle et/ou en salle informatique à l'aide du logiciel MATLAB) ainsi que sur un projet réalisé par groupes de 2 ou 3 étudiants.
Modes d'évaluation
des acquis des étudiants
  • Projet réalisé pendant le quadrimestre
  • Examen
  • D'autres activités, telles que des tests et des devoirs, peuvent entrer en considération dans la note finale.
Des précisions sont fournies dans le plan de cours disponible sur Moodle.
Bibliographie
Les notes de cours des co-titulaires sont disponibles.
Faculté ou entité
en charge
MAP


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] en statistique, orientation générale

Master [120] : ingénieur civil électricien

Mineure en sciences de l'ingénieur : mathématiques appliquées (accessible uniquement pour réinscription)

Mineure en Mathématiques appliquées

Filière en Mathématiques Appliquées