Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
6 crédits
30.0 h + 15.0 h
Q1
Enseignants
De Clercq Mikaël;
Langue
d'enseignement
d'enseignement
Français
Thèmes abordés
Le cours vise à développer les bases du traitement de données quantitatives de type descriptif et inférentiel.
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
Le cours vise les acquis d'apprentissage G4, et dans une moindre mesure, G2 (G26 & G27). Au terme du cours, les étudiant seront capables de :
|
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
Statistiques descriptives :
- Variables nominales : mode
- Variables ordinales : médiane, écart interquartile
- Variables continues : moyenne, variance, écart type.
Statistique inférentielle : raisonnement sous-jacent
- Population et Échantillon
- Procédure de test inférentiel
- Erreur de type I et II et puissance
- Taille d'effet
Statistiques inférentielles (statistiques de test):
- Chi-carré et V de Cramer.
- Corrélations de Spearman et Pearson.
- Régression linéaire simple et multiple.
- T de student et analyse de variance à un critère.
Lecture critique d'articles :
- Termes et symboles statistiques les plus courants dans les publications.
- Méthode de lecture de graphes, tables et indices.
- Prise de recul sur les méthodes de présentation de l'information statistique.
- Prise de conscience des limites des outils statistiques.
- Variables nominales : mode
- Variables ordinales : médiane, écart interquartile
- Variables continues : moyenne, variance, écart type.
Statistique inférentielle : raisonnement sous-jacent
- Population et Échantillon
- Procédure de test inférentiel
- Erreur de type I et II et puissance
- Taille d'effet
Statistiques inférentielles (statistiques de test):
- Chi-carré et V de Cramer.
- Corrélations de Spearman et Pearson.
- Régression linéaire simple et multiple.
- T de student et analyse de variance à un critère.
Lecture critique d'articles :
- Termes et symboles statistiques les plus courants dans les publications.
- Méthode de lecture de graphes, tables et indices.
- Prise de recul sur les méthodes de présentation de l'information statistique.
- Prise de conscience des limites des outils statistiques.
Méthodes d'enseignement
Le temps de formation est découpé en 30h de cours magistral et 15h de travaux pratiques. Les séances de cours magistral alternent exposés et exercices. Les séances de travaux pratiques ont pour but de faciliter le développement des compétences de sélection, de calcul et d'interprétation des méthodes statistiques de type descriptif ou inférentiel. Tant dans le cours magistral que dans les travaux pratiques, les étudiants seront familiarisés à l'utilisation des logiciels de calcul statistique.
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
Examen écrit individuel
Ressources
en ligne
en ligne
http://www.icampus.be
Bibliographie
Bressoux, P. (2008). Modélisation statistique appliquée aux sciences sociales. Bruxelles: De Boeck Université.
Dancey, C. et Reidy J. (2007). Statistiques sans maths pour psychologues. Bruxelles : De Boeck.
Howell, D. (2008). Méthodes statistiques en sciences humaines. Bruxelles : De Boeck.
Dancey, C. et Reidy J. (2007). Statistiques sans maths pour psychologues. Bruxelles : De Boeck.
Howell, D. (2008). Méthodes statistiques en sciences humaines. Bruxelles : De Boeck.
Faculté ou entité
en charge
en charge
EDEF