Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
3 crédits
20.0 h + 20.0 h
Q1
Enseignants
Charlier Jean-Christophe; Louveaux Jérôme; Oestges Claude;
Langue
d'enseignement
d'enseignement
Français
Préalables
Ce cours suppose acquises les notions de mathématiques et de physique telles qu'enseignées dans les cours LEPL1101, LEPL1102, LEPL1105 , LEPL1201 et LEPL1202
Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Thèmes abordés
Deux thèmes sont abordés :
- Le premier thème concerne la physique des ondes, avec un accent particulier mis sur les ondes électromagnétiques. Il débute par l’établissement des équations de Maxwell et se poursuit par la dérivation de l'équation d'ondes à partir de celles-ci (ou à partir des équations de la mécanique), en en présentant les solutions générales. Il s'attache ensuite à décrire les propriétés des ondes (longueur d'onde, vitesse, effet Doppler, polarisation,...), puis examine le comportement des ondes à l'interface entre deux corps (équations de Snell et de Fresnel). Il étudie ensuite les phénomènes d'interférence et de diffraction en faisant usage d’une notation des champs sous forme complexe, puis aborde les ondes stationnaires et la notion de paquet d’ondes. Il se termine par l’étude de la génération des ondes électromagnétiques (antennes et dipôles oscillants).
- Le second thème est une introduction à la physique quantique : en s'appuyant sur la notion d'ondes, il s'attache à montrer la continuité et la radicale nouveauté de la physique quantique par rapport à la physique classique. Il présente les limites de la physique classique et la réponse apportée par la physique quantique (dualité onde-particule, principe d’incertitude de Heisenberg, équation de Schrödinger), en s'appuyant sur les concepts vus dans le premier thème. Il montre l'intérêt de la physique quantique pour résoudre des problèmes simples, et termine par une brève justification des propriétés des atomes (atome d'hydrogène), permettant de faire le lien vers la notion d'orbitale nécessaire pour comprendre la chimie et celle de structure de bandes utilisée en physique de l’état solide.
Contenu
Partie 1 : Ondes
1.1. Courant de déplacement – approche intégrée des phénomènes électromagnétiques
1.2. Les équations de Maxwell et l'équation d'onde
1.3. Solutions de l'équation d'onde; ondes mécaniques
1.4. Polarisation; réflexion et réfraction
1.5. Interférences
1.6. Diffraction
1.7. Ondes stationnaires
1.8. Rayonnement électromagnétique et antennes
Partie 2 : Physique quantique
2.1. Dualité onde-particule, Principe d’incertitude de Heisenberg
2.2. Equation de Schrödinger et fonction d'onde
2.3. Particules quantiques, puits de potentiel et effet tunnel
2.4. Modèle de l'atome d'hydrogène et structure de bande des cristaux
1.1. Courant de déplacement – approche intégrée des phénomènes électromagnétiques
1.2. Les équations de Maxwell et l'équation d'onde
1.3. Solutions de l'équation d'onde; ondes mécaniques
1.4. Polarisation; réflexion et réfraction
1.5. Interférences
1.6. Diffraction
1.7. Ondes stationnaires
1.8. Rayonnement électromagnétique et antennes
Partie 2 : Physique quantique
2.1. Dualité onde-particule, Principe d’incertitude de Heisenberg
2.2. Equation de Schrödinger et fonction d'onde
2.3. Particules quantiques, puits de potentiel et effet tunnel
2.4. Modèle de l'atome d'hydrogène et structure de bande des cristaux
Méthodes d'enseignement
- Cours magistraux (CM).
- Apprentissage en groupes par exercices (APE), par problèmes (APP) ou laboratoire (LABO).
- Apprentissage en groupes par exercices (APE), par problèmes (APP) ou laboratoire (LABO).
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
L'évaluation repose sur
Les étudiants disposent pour l'examen (et interrogation si elle est certificative) d'un formulaire établi par les enseignants et disponible sur le site du cours.
- un examen écrit en session à l'issue du quadrimestre
- la participation (obligatoire) aux laboratoires (les absences non-justifiées seront sanctionnées)
- une interrogation (certificative ou non) de mi-quadrimestre est organisée pour permettre une évaluation intermédiaire
- une présentation publique de leur travail (APP ou LABO) par des groupes tirés au sort est également planifiée au début de certains cours magistraux
Les étudiants disposent pour l'examen (et interrogation si elle est certificative) d'un formulaire établi par les enseignants et disponible sur le site du cours.
Ressources
en ligne
en ligne
Moodle: https://moodleucl.uclouvain.be/course/view.php?id=7223
Faculté ou entité
en charge
en charge
BTCI