Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
5 crédits
30.0 h + 30.0 h
Q1
Enseignants
Flandre Denis; Janvier Danielle; Oestges Claude;
Langue
d'enseignement
d'enseignement
Français
Préalables
Ce cours suppose acquises les notions de base de physique de l'électricité et des ondes, telles qu'enseignées dans les cours LEPL1201, LEPL1202, LEPL1203.
Thèmes abordés
Ce cours vise à identifier et mettre en oeuvre les lois de base de l'électromagnétisme (partie 1) et des dispositifs électroniques (partie 2) en vue de leurs applications dans les cours avancés des filières électricité, électromécanique ou physique appliquée.
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
a. Contribution de l'activité au référentiel AA (AA du programme) Axe 1 (1.1, 1.2, 1.3), Axe 2 (2.2), Axe 3 (3.2) b. A l'issue de ce cours, l'étudiant sera en mesure de : Partie 1 : Electromagnétisme
Vérifier les unités des différentes variables et termes qui apparaissent dans les équations constitutives d'un modèle |
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
Le cours contient les outils nécessaires à la résolution des problèmes d'électromagnétismes classiques et permet aux étudiants de mettre ces outils en pratique dans la résolution de problèmes simples. Une grande attention est portée à la démarche de modélisation de problèmes pratiques et à leur mise en équation. Les équations disponibles sont peu nombreuses, la difficulté réside principalement dans le choix de la forme des équations la plus adéquate (équations intégrales ou différentielles, coordonnées cartésiennes ou sphériques, etc.) pour le problème posé.
La partie dispositifs électroniques utilise une démarche similaire. Les équations sont adaptées et simplifiées au cas des semiconducteurs. Sur cette base, la physique des dispositifs semiconducteurs principaux est mise en équation et les résultats confrontés à leurs caractéristiques réelles. Les conditions de validité des modèles simples, leurs limites et corrections de second ordre sont largement discutées.
La partie dispositifs électroniques utilise une démarche similaire. Les équations sont adaptées et simplifiées au cas des semiconducteurs. Sur cette base, la physique des dispositifs semiconducteurs principaux est mise en équation et les résultats confrontés à leurs caractéristiques réelles. Les conditions de validité des modèles simples, leurs limites et corrections de second ordre sont largement discutées.
Méthodes d'enseignement
Le cours est organisé autour des cours théoriques et des séances d'exercices.
Les enseignants privilégient la bonne connaissance des notions de base.
Les exercices permettent d'apprendre à maîtriser la mise en oeuvre des équations de Maxwell pour la résolution de problèmes simples d'électromagnétisme.
Dans la partie dispositifs électroniqes, il s'agit de résoudre des problèmes simples de physique des semiconducteurs et des dispositifs de base.
L'activité se donne en présentiel.
Les enseignants privilégient la bonne connaissance des notions de base.
Les exercices permettent d'apprendre à maîtriser la mise en oeuvre des équations de Maxwell pour la résolution de problèmes simples d'électromagnétisme.
Dans la partie dispositifs électroniqes, il s'agit de résoudre des problèmes simples de physique des semiconducteurs et des dispositifs de base.
L'activité se donne en présentiel.
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
La partie "électromagnétisme" et la partie "dispositifs électroniques" comptent chacune pour la moitié de la note finale, sauf si une lacune importante est constatée dans une des deux parties.
Un examen dispensatoire peut être organisé en novembre pour la partie "électromagnétisme" (exercices, avec un formulaire). Dans ce cas, les étudiants ayant obtenu plus de 12/20 à cet examen peuvent choisir de conserver ou non leur note (pour cette partie) pour les sessions de janvier et/ou août (cette note n'est cependant pas reportée à l'année académique suivante).
Un examen dispensatoire peut être organisé en novembre pour la partie "électromagnétisme" (exercices, avec un formulaire). Dans ce cas, les étudiants ayant obtenu plus de 12/20 à cet examen peuvent choisir de conserver ou non leur note (pour cette partie) pour les sessions de janvier et/ou août (cette note n'est cependant pas reportée à l'année académique suivante).
L'évaluation de la partie dispositifs électroniques est constituée de l'examen écrit organisé en session, ainsi que de tests écrits éventuellement réalisés pendant le quadrimestre.
Ressources
en ligne
en ligne
Bibliographie
Livre de référence pour la partie électromagnétisme : Engineering Electromagnetics, Hayt et Buck, McGraw Hill, 7e édition
Notes sur Moodle pour les dispositifs électroniques. Quelques livres de référence sont disponibles à la BST :
« Physique des dispositifs semi-conducteurs », De Boeck Université, J.-P. Colinge et F. Van de Wiele
« Operation and modeling of the MOS transistor», Y. P. Tsividis, McGraw-Hill Book Company.
"Physics of semiconductor devices", S. M. Sze, Wiley.
Notes sur Moodle pour les dispositifs électroniques. Quelques livres de référence sont disponibles à la BST :
« Physique des dispositifs semi-conducteurs », De Boeck Université, J.-P. Colinge et F. Van de Wiele
« Operation and modeling of the MOS transistor», Y. P. Tsividis, McGraw-Hill Book Company.
"Physics of semiconductor devices", S. M. Sze, Wiley.
Faculté ou entité
en charge
en charge
ELEC