Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
5 crédits
30.0 h
Q2
Enseignants
Sommer Felix;
Langue
d'enseignement
d'enseignement
Français
Thèmes abordés
Les thèmes principaux de ce cours sont :
- Principaux courants en recommandation
- Principaux courants en recommandation
- Recommandation collaborative
- Recommandation basée sur le contenu
- Recommandation basée sur la connaissance
- Modèle des plus proches voisins
- Modèle des classes latentes
- Modèles basés sur la réduction de dimensionnalité et les décompositions
- matricielles (par exemple, nonnegative matrix factorization)
- etc.
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
|
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
Les systèmes de recommandation aujourd'hui jouent un rôle de plus en plus important pour savoir proposer des produits ou services aux consommateurs. La recommandation des films, de la musique, des nouvelles, des services financiers, termes de recherche, ou des contacts professionnels, etc. est devenu un atout clé pour de nombreuses entreprises. Les systèmes de recommandation peuvent être basés sur de nombreuses approches existantes. Ce cours a pour objet certains de ces systèmes en mettant les données des systèmes de recommandation, le filtrage collaboratif, la factorisation de la matrice et l'évaluation des systèmes de recommandation en évidence.
Méthodes d'enseignement
Cours, Travaux pratique intégré dans les cours
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
Examen oral basé sur les cours ainsi qu’un projet de développement
Ressources
en ligne
en ligne
Introduction en bref : https://tryolabs.com/blog/introduction-to-recommender-systems/
Aperçu général : https://link.springer.com/book/10.1007%2F978-3-319-29659-3
Aperçu général : https://link.springer.com/book/10.1007%2F978-3-319-29659-3
Bibliographie
Ekstrand, Michael D., John T. Riedl, and Joseph A. Konstan. "Collaborative filtering recommender systems." Foundations and Trends® in Human–Computer Interaction 4, no. 2 (2011): 81-173.
Aggarwal, Charu C.. “Recommender Systems.” Springer International Publishing (2016).
Aggarwal, Charu C.. “Recommender Systems.” Springer International Publishing (2016).
Faculté ou entité
en charge
en charge
CLSM