Analyse des données

lstat2110a  2019-2020  Louvain-la-Neuve

Analyse des données
Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
3 crédits
15.0 h + 7.5 h
Q1
Enseignants
Segers Johan;
Langue
d'enseignement
Français
Thèmes abordés
- Rappels d'algèbre et de géométrie utiles à l'analyse des données.. - Principes de base des méthodes factorielles. - Analyse en composantes principales et ses variations. - Analys edes corrélations canoniques. - Analyse factorielle discriminante. - Analyse factorielle des correspondances. - Introduction aux méthodes de classification. - L'analyse des données, en pratique.
Contenu
  • Matrices de données
  • Analyse en composantes principales
  • Classification: moyennes mobiles et classification hiérarchique
  • Analyse discriminante linéaire
  • Analyse des correspondances simple et multiple
  • Régression sur composantes principales
  • Régression des moindres carrés partiels
Les méthodes sont réalisés dans le language R via le logiciel RStudio, et R Markdown est utilisé pour la réalisation de rapports comprenant à la fois du texte, des développements mathématiques, du code R et les résultats des analyses (tables, figures).
Méthodes d'enseignement
Lors des cours magistraux, l'enseignant présente les différentes méthodes d'analyse, couvrant à la fois leur champ d'application, la théorie mathématique sous-jacante, et la programmation en R. Des devoirs sont donnés dont la solution est discuté lors des cours magistraux aussi.
Les TP se déroulent en salle informatique et servent surtout pour permettre aux étudiants de s'entraîner à l'application des méthodes d'analyse en R et sur des vrais jeux de données.
Modes d'évaluation
des acquis des étudiants
Tests lors des cours magistraux:
  • Test 1: Matrices de données et analyse en composantes principales
  • Test 2: Classification et Analyse discriminante linéaire
Participation optionnelle. Au choix de l'étudiant, chaque test peut remplacer la partie de l'examen sur le même sujet.
Examen (12/20):
  • par écrit, à livre fermé, à l'aide d'un formulaire et d'une calculatrice
  • exercices et questions de calcul, d'interprétation de sortie de logiciel, et de compréhension des formules et des résultats principaux
Projet (8/20):
  • seul ou en binôme
  • application des méthodes sur une base de donnée apportée par l'étudiant lui-même
  • rapport écrit en R Markdown, à soumettre avant la session d’examens
  • consignes détaillés lors des TP et sur la page MoodleUCL du cours
Autres infos
Préalables :
  • calcul vectoriel et matriciel
  • géométrie euclidienne: points, espaces, orthogonalité, distances, angles
  • notions de base en statistique: moyenne, (co)variance, corrélation, matrice de covariance, probabilité conditionnelle, distribution normale, distribution khi-carré
Ressources
en ligne
Toutes les ressources nécessairs pour le cours sont fournies sur la page MoodleUCL du cours: les dias des cours magistraux et des TP, les script informatiques, les exercices. En plus, des liens vers des ressources électroniques externes sont fournis aussi: des cours en ligne, des vidéos, de la documentation du logiciel utilisé.
Bibliographie
  • Escofier, B. et Pagès, J. (2016): Analyses factorielles simples et multiples, 5e édition, Dunod, Paris.
  • Lebart, L., Piron, M. et Morineau, A. (2006): Statistique exploratoire multidimensionnelle, 4e édition, Dunod, Paris.
  • Saporta, G. (2011): Probabilités, analyse des données et statistique, 3e édition révisée, Editions TECHNIP, Paris.
Faculté ou entité
en charge
LSBA


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] : bioingénieur en sciences et technologies de l'environnement

Master [120] en sciences agronomiques et industries du vivant

Master [120] : bioingénieur en gestion des forêts et des espaces naturels