Nonlinear dynamics

lphys2114  2019-2020  Louvain-la-Neuve

Nonlinear dynamics
Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
5 crédits
22.5 h + 22.5 h
Q1
Enseignants
Hagendorf Christian;
Langue
d'enseignement
Anglais
Préalables
LMAT1122 et LMAT1261 pour les étudiant.e.s du Bachelier en sciences physiques qui souhaitent suivre cette unité d'enseignement dans le cadre de l'Approfondissement en sciences physiques.
Thèmes abordés
Cette unité d'enseignement consiste en une introduction aux concepts et méthodesmathématiques de la théorie des systèmes dynamiques et ses applications en physique, chimie, biologie et les sciences de l'ingénieur.
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1 a.     Contribution de l'activité au référentiel AA du programme
1.1, 1.3, 1.4, 2.1, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6
b.     Formulation spécifique pour cette activité des AA du programme
Au terme de cette unité d'enseignement, l'étudiant.e sera capable de :
1.    utiliser des outiles mathématiques afin de caractériser les propriétés des systèmes dynamiques non linéaires discrets et continus ;
2.    caractériser la dynamique chaotique d'un système.
 

La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
L'unité d'enseignement propose une introduction à la théorie mathématique des systèmes dynamiques non linéaires et ses applications à des problèmes de la physique, chimie, biologie et sciences de l'ingénieur.
Les matières suivanets sont abordées dans le cadre de l'unité d'enseignement :
1.  Notions de base: définition d'un système dynamique, exemples de systèmes dynamiques continus et discrets, points d'équilibre hyperboliques et stabilité, bifurcations.
2.  Systèmes discrets chaotiques: chaos et propriété de sensibilité des conditions initiales, itinéraires, méthode de conjugaison, exposants de Lyapunov, application logistique.
3.  Linéarisation et la variété stable-instable: dynamique des systèmes linéaires,  classification des points fixes bidimensionnels, linéarisation autour de points fixes hyperboliques, variétés stable-instable et leur calcul perturbatif.
4.  Le fer à cheval: intersections des variétés stables-instables et points homoclines, fer à cheval et chaos, ensembles de Cantor.
5.  Le théorème de Poincaré-Bendixon: régions de trappe, cycles et ensembles limites, application de Poincaré et sections de Poincaré, théorème de Poincaré-Bendixon, applications (existence d'orbites périodiques, systèmes de Liénard).
6.  Notions de théorie ergodique: notion d'ergodicité, lien avec la mécanique statistique, théorème de retour de Poincaré, théorèmes ergodiques, exemples et applications.
Méthodes d'enseignement
Les activités d'apprentissage sont constituées par des cours magistraux, des séances de travaux pratiques et un projet.
Les cours magistraux visent à introduire les concepts fondamentaux, à les motiver en montrant des exemples et en établissant des résultats, à montrer leurs liens réciproques et leurs relations avec d'autres disciplines scientifiques.
Les séances de travaux pratiques visent à appliquer les concepts vus au cours théorique à des problèmes concrets, choisir et utiliser des méthodes de calcul pour leur analyse et interpréter les résultats obtenus.
Les cours et séances de travaux pratiques se donnent en présentiel.
Modes d'évaluation
des acquis des étudiants
L'évaluation se fait sur base d'un examen écrit. Il portesur l'application de la théorie des systèmes dynamiques à des problèmes concrets. On y teste la connaissance et la compréhension des notions vues au cours théorique, la capacité d'analyser un problème de systèmes dynamiques, la maîtrise des techniques de calcul et la présentation cohérente de cette analyse.
Ressources
en ligne
Le site MoodleUCL de cette unité d'enseignement contient les énoncés des exercices des travaux pratiques, un plan détaillé de l'unité d'enseignement ainsi qu'une bibliographie complète.
Bibliographie
  • K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos. An introduction to dynamical systems. Springer-Verlag (2008).
  • M.W. Hirsch, S. Smale, R.L. Devaney, Differential equations, dynamical systems, and an introduction to chaos. Academic Press (2013).
  • S.H. Strogatz, Nonlinear dynamics and chaos. Westview Press (2015).
  • M. Tabor, Chaos and integrability in non-linear dynamics : an introduction. J. Wiley & Sons (1989).
Faculté ou entité
en charge
PHYS


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] en sciences mathématiques

Master [60] en sciences physiques

Master [120] en statistique, orientation générale

Master [120] en sciences physiques

Approfondissement en sciences physiques

Approfondissement en sciences mathématiques