Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
5 crédits
37.5 h + 22.5 h
Q1
Enseignants
Gonze Xavier; Piraux Luc; Rignanese Gian-Marco;
Langue
d'enseignement
d'enseignement
Anglais
Thèmes abordés
Le cours est divisé en trois parties. La première partie donne une vue d'ensemble des matériaux fonctionnels, avec un accent particulier mis sur les matériaux ferroïques. La seconde partie porte sur les matériaux supraconducteurs. La troisième partie est dédiée aux matériaux pour l'optique.
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
Contribution du cours au référentiel du programme Axe Nº1 : Socle de connaissances scientifiques et techniques : 1.1 Axe Nº3 : Compétences en R&D : 3.1 et 3.3 Axe Nº4 : Conduite de projet : 4.2, 4.3, et 4.4 Axe Nº5 : Communication efficace : 5.3, 5.4, 5.5 et 5.6 Axe Nº6 : Ethique et professionnalisme : 6.1, 6.4 Acquis d'apprentissage spécifiques au cours À l'issue de ce cours, l'étudiant sera en mesure de :
|
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
La première partie présente les divers types de matériaux et leur classification par rapport à leur fonction. Une attention particulière est donnée à leur utilisation à l'échelle industrielle et dans la vie quotidienne. La symétrie des propriétés est discutée. Une approche thermodynamique est introduite pour distinguer les propriétés directes de celles de couplage. L'origine microscopique des propriétés directes est discutée ce qui permettra de voir / revoir / approfondir les notions de base sur les matériaux magnétiques (dia-, para-, ferro-, ferri-, et antiferro-magnétisme) et diélectriques (diélectriques polaires, ferroélectricité).
La seconde partie traite des matériaux supraconducteurs. Après un bref historique, les principaux faits expérimentaux et les divers matériaux supraconducteurs sont présentés. Un survol du cadre théorique (London, BCS, Ginsburg-Landau) est proposé en soulignant ses implications. L'utilisation de supraconducteurs est discutée pour le transport du courant et la production de champs magnétiques intenses. Les notions de courant et champs critiques, et de réseau de vortex sont introduites. Les caractéristiques courant/tension de jonctions supraconductrices sont décrites (effets Josephson), en insistant sur des applications concrètes, notamment la réalisation de détecteurs ultra-sensibles (SQUID) et de dispositifs à haute fréquence.
La troisième partie traite des matériaux à propriétés optiques dont les applications se retrouvent dans la vie quotidienne. Les phénomènes d'absorption, d'émission et de propagation dans les milieux condensés seront étudiés en détail. La théorie sera illustrée par l'analyse de divers cas-types choisis parmi les diodes électroluminescentes (y compris leur rayonnement LASER), la propagation et l'amplification dans les système basés sur des fibres optiques, les cellules photovoltaïques, les LASERs basés sur des cristaux dopés, les concentrateurs solaires et matériaux transparents conducteurs.
La seconde partie traite des matériaux supraconducteurs. Après un bref historique, les principaux faits expérimentaux et les divers matériaux supraconducteurs sont présentés. Un survol du cadre théorique (London, BCS, Ginsburg-Landau) est proposé en soulignant ses implications. L'utilisation de supraconducteurs est discutée pour le transport du courant et la production de champs magnétiques intenses. Les notions de courant et champs critiques, et de réseau de vortex sont introduites. Les caractéristiques courant/tension de jonctions supraconductrices sont décrites (effets Josephson), en insistant sur des applications concrètes, notamment la réalisation de détecteurs ultra-sensibles (SQUID) et de dispositifs à haute fréquence.
La troisième partie traite des matériaux à propriétés optiques dont les applications se retrouvent dans la vie quotidienne. Les phénomènes d'absorption, d'émission et de propagation dans les milieux condensés seront étudiés en détail. La théorie sera illustrée par l'analyse de divers cas-types choisis parmi les diodes électroluminescentes (y compris leur rayonnement LASER), la propagation et l'amplification dans les système basés sur des fibres optiques, les cellules photovoltaïques, les LASERs basés sur des cristaux dopés, les concentrateurs solaires et matériaux transparents conducteurs.
Méthodes d'enseignement
Le cours est organisé autour de projets à réaliser en groupe de 5-6 étudiants. Les divers projets sont introduits lors d'un cours magistral au début du quadrimestre. Les groupes discutent de leur projet chaque semaine avec un des titulaires (ces rencontres sont également l'occasion pour ce titulaire d'apporter un coaching au niveau des compétences relatives aux axes 3-6 des AA). Ils devront remettre un rapport en anglais et en faire une présentation orale devant leurs collègues et les titulaires du cours. Les rapports seront lus par les collègues et feront l'objet d'une séance de questions/réponses lors de la présentation orale.
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
Les compétences des étudiants, aussi bien scientifiques et techniques (Axe N°1) que relatives aux autres axes du référentiel (communication, conduite de projet…) seront évaluées:
- en groupe sur base d'un rapport du travail effectué et de la présentation orale faite devant leurs collègues (typiquement entre les semaines 9 et 13 du quadrimestre);
- individuellement en fonction de leur participation active aux réunions de groupe hebdomadaires en présence du titulaire (évaluation continue);
- individuellement et par écrit via des quizz suivant les présentations orales des autres groupes (donc aussi en dehors de la période d'examen);
- individuellement et par écrit sur base des objectifs particuliers annoncés précédemment (durant la période d'examen). L'examen écrit portera sur les matières présentées par les autres groupes.
Autres infos
Ce cours suppose acquises les notions de base en sciences des matériaux, en physique quantique, en physique statistique, et en physique des matériaux (dispensées par exemple dans les cours LMAPR1805, LMAPR1491, et LMAPR1492).
Ressources
en ligne
en ligne
Bibliographie
Sur Moodle, sont disponibles : les directives, les transparents/syllabus de support, les rapports des années précédentes.
Des livres de support sont disponibles à la BST.
Des livres de support sont disponibles à la BST.
Faculté ou entité
en charge
en charge
FYKI