Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
6 crédits
30.0 h + 30.0 h
Q1
Enseignants
Deville Yves;
Langue
d'enseignement
d'enseignement
Anglais
Préalables
LSINF1121 : Programmation dans un langage de haut niveau; algorithmique et structures de donnes
Thèmes abordés
- Résolution de problèmes par la recherche: formulation des problèmes, stratégies de recherche informées et non informées, recherche locale, évaluation du comportement et coût estimé, applications
- Satisfaction de contraintes: problèmes de formulation, traçage et propagation de contraintes, applications
- Jeux et recherche contradictoire : algorithme de minimax et élagage Alpha-Beta, applications
- Logique propositionnelle: représentation des connaissances, inférence et raisonnement, applications
- Logique du premier ordre: représentation des connaissances, inférence et raisonnement, chaînage avant et arrière, systèmes à base de règles, applications
- Planification: langages des problèmes de planification, méthodes de recherche, graphes de planification, planification hiérarchique, extensions, applications
-
AI, philosophie et éthique: "les machines savent-elles agir intelligemment ?", "les machines savent-elles vraiment penser ?", l'éthique et les risques de l'intelligence artificielle, l'avenir de l'intelligence artificielle
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
Eu égard au référentiel AA du programme « Master ingénieur civil en informatique », ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants :
|
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
-
Introduction
- Recherche
- Recherche informée
- Recherche locale
- Recherche avec adversaire
- Problème de satisfaction de contraintes
- Agent logique
- Logique de premier ordre et inférence
- Planification classique
- Planification dans le monde réel
- Apprendre à partir d'exemples
- Fondements philosophiques, le présent et l'avenir de l'AI
Méthodes d'enseignement
- apprentissage par problèmes
- Apprendre en faisant
- 5 missions (de deux semaines)
- équipes de deux étudiants
- Cours magistral (1 heure / semaine)
- Feed-back sur les missions clôturées (1 / 2 heure)
- Discussion de la mission en cours (1 / 2 heure)
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
-
Examen : 70%
-
Missions: 30%.
Les travaux doivent être personnels (équipe de 2). Pas de collaboration entre les groupes. Aucune copie à partir d'Internet. Tricherie = 0 / 20 pour toutes les missions. En cas, d'échec des missions la pondération de cette partie sera plus importante. - Les travaux ne peuvent être réalisés que pendant le quadrimestre du cours. Il n'est pas possible de refaire les travaux durant un autre semestre ou pour la session de septembre.
Ressources
en ligne
en ligne
Bibliographie
- Stuart Russell, Peter Norvig, Artificial Intelligence : a Modern Approach, 3nd Edition, 2010, 1132 pages, Prentice Hall
- transparents en ligne
Faculté ou entité
en charge
en charge
INFO
Programmes / formations proposant cette unité d'enseignement (UE)
Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
d'apprentissage
Master [120] : ingénieur civil en science des données
Master [120] : ingénieur civil biomédical
Master [120] : ingénieur civil en informatique
Master [60] en sciences informatiques
Master [120] en sciences informatiques
Master [120] en science des données, orientation technologies de l'information