Advanced Econometrics - UCL

lecon2131  2019-2020  Louvain-la-Neuve

Advanced Econometrics - UCL
Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
5 crédits
30.0 h
Q2
Enseignants
Van Bellegem Sébastien;
Langue
d'enseignement
Anglais
Préalables
Mathematics and Statistics for Economists
Thèmes abordés
The course must cover the basic most important topics of econometric theory at an advanced level.
These themes concern econometric model formulation, estimation and testing.
Teaching is at an advanced level. Proofs of important results are covered, though not systematically. Applications are also used so that students learn how to carry applications in their own research.
Contents
  • Linear regression : exact finite sample theory of ordinary and generalized least squares
  • Large-sample theory: convergence  concepts, stochastic processes (stationarity and ergodicitys, IID and white noise, martingales, martingale difference sequences) and limit theorems for IID and MDS). Application to large sample theory of least-squares estimation.
  • GMM and the method of instrumental variables
  • The method of maximum likelihood: (estimation and testing) and its application to linear regression and non-linear regression models.
  • Empirical applications. Use of an econometric and simulation/computational software.
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1 The purpose is that students acquire the basic tools of econometric research which are of general use in more specialized fields of research and which are covered in subsequent courses (Microeconometrics and  Econometrics of Time-Series). An example of such a tool is the method of estimation by maximum likelihood.
 

La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
Contents
  • Linear regression : exact finite sample theory of ordinary and generalized least squares
  • Large-sample theory: convergence  concepts, stochastic processes (stationarity and ergodicitys, IID and white noise, martingales, martingale difference sequences) and limit theorems for IID and MDS). Application to large sample theory of least-squares estimation.
  • GMM and the method of instrumental variables
  • The method of maximum likelihood: (estimation and testing) and its application to linear regression and non-linear regression models.
  • Empirical applications. Use of an econometric and simulation/computational software.
Méthodes d'enseignement
Lectures, take-home exercises (theory-based, and empirical using econometric software)
Modes d'évaluation
des acquis des étudiants
Oral or written exam. A part of the final result is reserved for the evaluation of the exercises assignned during the term.
Autres infos
Support: A textbook like Hayashi Econometrics
Bibliographie
Faculté ou entité
en charge
ECON


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] en sciences économiques, orientation générale

Master [120] en sciences économiques, orientation économétrie