Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
3 crédits
Q1
Langue
d'enseignement
d'enseignement
Anglais
Préalables
Bachelor level lectures on physics, mechanics, mathematics.
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
|
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
Part S. Tavernier
1: Radiological quantities and units
1.1 : Exposure and kerma
1.2 : Absorbed dose
1.3 : Equivalent dose
1.4 : Effective dose
1.5 : Operational dose quantities
2: External dosimetry
2.1 : Ionometry of low energy photon fields
2.2 : High energy photon fields: the Bragg Gray relation
2.3 : Dosimetry of neutron fields
3: Internal dosimetry
3.1 : Concept of committed dose equivalent
3.2 : Concept of specific effective energy
3.3 : Compartmental model analysis
3.4 : Dosimetric model for the respiratory system
3.5 : Dosimetric model for the gastrointestinal tract
3.6 : Dosimetric model for bone
3.7 : Metabolic data of important fission products and actinides
4: Biological effects of ionizing radiation
4.1 : Deterministic and stochastic effects
4.2 : Overview of direct effects including utero
4.3 : Overview of late effects: the UNSCEAR report
4.4 : Biological effect models used in radiation protection
5: Engineering aspects of radiation shielding
5.1 : Build up factors
5.2 : Shielding of photon fields
5.3 : Shielding of combined neutron-photon fields
6: Dispersion of effluents from nuclear facilities
6.1 : Meteorology of dispersion
6.2 : Diffusion of effluents-Pasquill conditions
6.3 : External dose from plume
6.4 : Internal dose from inhalation
7: Legislation and regulations
7.1 : The ICRP 103 publication
7.2 : The conceptual framework of radiological protection
7.3 : The system of protection in occupational and public exposures
7.4 : The system of protection in interventions, accidents and emergencies
8: Measurement techniques in radiation protection
8.1 : Ionometry
8.2 : Film dosimetry
8.3: TLD dosimetry
8.4: OSL dosimetry
- Introduction to subatomic physics
- Reminder on special relativity
- Reminder on probability theory
- Interactions of charged particles in matter
- Interactions of X and gamma rays in matter
- Neutrino interactions
- Introduction to Accelerators
- Accelerators for accelerator driven systems
- Detectors based on ionisation in gases
- Detectors based on ionisation in semiconductors
- Detectors based on scintillation
- Neutron detectors
- Electronics for nuclear detectors
1: Radiological quantities and units
1.1 : Exposure and kerma
1.2 : Absorbed dose
1.3 : Equivalent dose
1.4 : Effective dose
1.5 : Operational dose quantities
2: External dosimetry
2.1 : Ionometry of low energy photon fields
2.2 : High energy photon fields: the Bragg Gray relation
2.3 : Dosimetry of neutron fields
3: Internal dosimetry
3.1 : Concept of committed dose equivalent
3.2 : Concept of specific effective energy
3.3 : Compartmental model analysis
3.4 : Dosimetric model for the respiratory system
3.5 : Dosimetric model for the gastrointestinal tract
3.6 : Dosimetric model for bone
3.7 : Metabolic data of important fission products and actinides
4: Biological effects of ionizing radiation
4.1 : Deterministic and stochastic effects
4.2 : Overview of direct effects including utero
4.3 : Overview of late effects: the UNSCEAR report
4.4 : Biological effect models used in radiation protection
5: Engineering aspects of radiation shielding
5.1 : Build up factors
5.2 : Shielding of photon fields
5.3 : Shielding of combined neutron-photon fields
6: Dispersion of effluents from nuclear facilities
6.1 : Meteorology of dispersion
6.2 : Diffusion of effluents-Pasquill conditions
6.3 : External dose from plume
6.4 : Internal dose from inhalation
7: Legislation and regulations
7.1 : The ICRP 103 publication
7.2 : The conceptual framework of radiological protection
7.3 : The system of protection in occupational and public exposures
7.4 : The system of protection in interventions, accidents and emergencies
8: Measurement techniques in radiation protection
8.1 : Ionometry
8.2 : Film dosimetry
8.3: TLD dosimetry
8.4: OSL dosimetry
Méthodes d'enseignement
- 2 t.m. ; 36 hours of lectures, 5 lab sessions of ½ day
- laboratory work (SCK.CEN)
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
Written examination (closed book)
Autres infos
Prof. Nicolas Pauly ' Université Libre de Bruxelles
Course location: SCK-Cen (Mol)
Course location: SCK-Cen (Mol)
Ressources
en ligne
en ligne
Bibliographie
The PowerPoint presentations of the lectures are available on the BNEN website.
Other useful references:
Krane, K.S. 'Introductory Nuclear Physics', Wiley, 1987.
Tavernier, S. 'Experimental techniques in nuclear and particle physics', Springer-Verlag, 2010.
Knoll, G.F. 'Radiation detection and measurement', 4 ed., Wiley, 2010.
Other useful references:
Krane, K.S. 'Introductory Nuclear Physics', Wiley, 1987.
Tavernier, S. 'Experimental techniques in nuclear and particle physics', Springer-Verlag, 2010.
Knoll, G.F. 'Radiation detection and measurement', 4 ed., Wiley, 2010.
Faculté ou entité
en charge
en charge
EPL